
Inference with Deep Gaussian Process State Space
Models

Yuhao Liu,† Marzieh Ajirak,⋄ and Petar M. Djurić⋄
†Department of Applied Mathematics and Statistics

⋄ Department of Electrical and Computer Engineering
Stony Brook University, NY 11794

Abstract—In this paper, we address the problem of sequential
processing of observations modeled by deep Gaussian process
state space models. First, we introduce the model where the Gaus-
sian processes are based on random features and where both the
transition and observation functions of the models are unknown.
Then we propose a method that can estimate the unknowns of the
model. The method allows for incremental learning of the system
without requiring all the historical information. We also propose
an ensemble version of the method, where each member of the
ensemble has its own set of features. We show with computer
simulations that the method can track the latent states up to
scale and rotation.

I. INTRODUCTION

Non-linear state-space models (SSMs) are of importance in
science and engineering [3, 13]. In the past decade or so, they
have been increasingly studied by using data-driven methods
[15]. These methods can learn patterns from data and based on
them predict future observations. To avoid overfitting by non-
linear SSMs [7], especially for high dimensional systems with
a modest amount of observations, Gaussian process state-space
models (GPSSMs) have been proposed [1, 21]. In comparison
to many modern machine learning methods, their ability to
process uncertainties can improve the robustness during the
learning processes. For their inference, the variational infer-
ence has been put forth [7], including the expectation propa-
gation approach [4]. The expectation-maximization algorithm
has also been considered [9], primarily to avoid inaccuracies
that result from variational approximation. The authors of
[8] have developed various Monte Carlo methods to improve
the estimation accuracy. Besides function-space representation
of Gaussian processes (GPs), feature-space representations
of GPs have also been documented [11]. However, these
inference methods all operate in an offline mode.

One way of broadening the function space of a GP is by
introducing an ensemble of GPs [17]. Each GP in the ensemble
relies on all or a subset of training samples and uses a unique
kernel to make predictions. Ensembles of GPs have also been
used for combining global approximants with local GPs [20].
In [16], an ensemble of GPs was used for online interactive
learning.

There are two types of online GPSSMs in the existing
literature. One relies on variational inference [18], and it
requires updating all the historical information at each time

The authors thank the support of NSF under Award 2021002.

instant. This in turn incurs large complexity and computational
burden. Another approach is based on feature spaces [2], and
in its implementation, the number of parameters becomes very
large and is the exponential power of the latent dimensions.
Further, the approach assumes known hyper-parameters of the
kernels.

In this paper, our interest is in deep state-space models.
They were proposed for both linear systems [19] and non-
linear systems. The inference of these models was based on
variational inference [12]. A deep GPSSM was documented
in [22] with stochastic differential equation settings and only
discussed outputs with one dimension.

In this paper, we propose to overcome the problems of the
online setting and the inaccuracies due to variational inference.
We introduce novel models, namely online ensemble deep
GPSSMs (OED-GPSSMs) based on random features. For these
models, we propose a method that allows for incremental
learning of the system without requiring all the historical
information. We use random features to address the expo-
nential order of parameters, and we take advantage of an
ensemble approach to learn the unknown hyper-parameters of
the kernels. Our main contribution is the sequential inference
with deep GPSSMs, where both the transition and observation
functions are unknown. We propose a method that can track
the latent states up to scale and rotation.

II. BACKGROUND

In this section, we provide a very brief background on GPs
and sparsity related to GPs.

A. Gaussian processes

A Gaussian Process, written as GP (m(·), k(·, ·|θθθ)), is in
essence a distribution over functions, where m(·) is a mean
function, k(·, ·) is a kernel or covariance function, and θθθ is the
hyper-parameter vector parameterizing the kernel. To simplify
the notation, we express a GP as GP(m, k) or as GP(m, k(θθθ)),
if θθθ is emphasized. For any set of inputs X = [xj]

J
j=1 :=

[x1, . . . , xJ]
⊤ in the domain of a real-valued function f ∼

GP(m, k), the function values f = [f(xj)]Jj=1 are Gaussian
distributed, i.e.,

p(f|X) = N (f|mX,KXX),

792ISBN: 978-1-6654-6798-8 EUSIPCO 2022

where mX = [m(xj)]
J
j=1 is the mean and KXX := k(X,X|θθθ) =

[k(xi, xj)]i,j . Given the observation f on X, the predictive
distribution of a realization f∗ at new inputs X∗ is given by

p(f∗|X∗, f,X) = N (f∗|µµµ∗,ΣΣΣ∗),

with predictive mean and covariance given by

µµµ∗ = mX∗ + KX∗XK−1
XX(f − mX),

ΣΣΣ∗ = KX∗X∗ − KX∗XK−1
XXKXX∗ .

(1)

B. Sparsity and Gaussian processes

Gaussian processes do not scale up well with N , the number
of input-output pairs. We observe that in (1), one has to
invert the N × N matrix KXX, which for large values of
N becomes an issue. To ameliorate the problem, we resort
to approximations by exploiting the concept of sparsity. One
approach to such approximation is based on constructing GPs
with features that come from a feature space [14].

Compared with an approximation in function space, a GP
with a shift-invariant kernel has another way of approxima-
tion, which focuses on a feature space. The vector of basis
functions, also known as random features, are comprised of
trigonometric functions that are defined by

ϕϕϕv(x) =
1√
J
[sin(x⊤v1), cos(x⊤v1), ..., sin(x⊤vJ), cos(x⊤vJ)]⊤,

where v(1:J) = {vj}Jj=1 are vectors sampled from the power
spectral density of the kernel. Then the kernel function k(x, x′)
can be approximated by ϕϕϕv(x)⊤ϕϕϕv(x′) if the kernel is shift-
invariant. It brings a type of GP approximation according to

f ≈ ϕϕϕv(x)θθθ.

III. DEEP GAUSSIAN PROCESS STATE SPACE MODELS

In this section, we first describe deep GPSSMs and then
propose how to make inferences about all the unknowns of
these models.

A standard state space model is formed by

xt = f(xt−1) + ϵϵϵt, (2)
yt = g(xt) + et, (3)

where (2) represents the state equation with the latent state
xt ∈ Rdx being the state vector at time t, and (3) the
observation equation with the observations yt ∈ Rdy . The
symbols ϵϵϵt ∼ N (0, σ2

ϵ I) and et ∼ N (0, σ2
eI) are Gaussian

distributed errors (noises). If g(·) in (3) has a deep structure
as in Fig. 1, we write the SSM using the form of random
features as

Transition: x0,t = H⊤ϕϕϕv(x0,t−1) + ϵϵϵt,

Deep: xl,t =ΘΘΘ⊤
l−1ϕϕϕv(xl−1,t) + el−1,t,

Observation: yt =ΘΘΘ⊤
Lϕϕϕv(xL,t) + eL,t,

where l = 1, . . . , L indexes the layers, ϕϕϕv represents ran-
dom features with v = {v(1:J)

l }Ll=0, xl,t ∈ RDl are the
hidden states, el,t ∼ N (0, σ2

l I), H = [ηηη1, ηηη2, . . . , ηηηdx], and
ΘΘΘl = [θθθ1l , θθθ

2
l , . . . , θθθ

Dl+1

l] are parameter variables. Specifically,

𝐱!,# 𝐱!,#$%𝐱!,#&% 𝐱!,#$'

𝐱(,# 𝐱(,#$%𝐱(,#&% 𝐱(,#$'

𝐲# 𝐲#$%𝐲#&% 𝐲#$'

. . .

. . .

. . .

. . .
Fig. 1. A generic diagram of a DSS model with L layers.

dx = D0, dy = DL+1. Also, we denote yt = xL+1,t

for convenience. We assume that the parameter variables are
all independent, i.e., the columns of H and ΘΘΘ = {ΘΘΘl}Ll=0

are independent from the other columns. The independence
assumption about the parameter variables implies that the
dimensions of xl,t and yt are independent. To do the sequential
inference on the distribution of H, ΘΘΘ, and xl,t, we assign prior
distributions p(H), p(ΘΘΘ), and p(x0,0) to them and adopt the
Bayesian paradigm.

A. Updating the States

Suppose we have obtained the posterior of x0,t−1, H, ΘΘΘ at
time t−1, i.e., q(x0,t−1|y1:t−1), q(H|y1:t−1), and q(ΘΘΘ|y1:t−1).
Then we first define the predictive distribution of {xl,t}L+1

l=0

from layer 0 to layer L+ 1, We write

q(x0,t|y1:t−1) =

∫
p(x0,t|x0,t−1)q(x0,t−1|y1:t−1)dx0,t−1,

q(xl,t|y1:t−1) =

∫
p(xl,t|xl−1,t)q(xl−1,t|y1:t−1)dxl,t, (4)

where, we recall, xL+1,t = yt, l = 1, . . . , L, and

p(x0,t|x0,t−1, y1:t−1) =

∫
p(x0,t|x0,t−1,H)

× q(H|x0,t−1, y1:t−1)dH, (5)

p(xl,t|xl−1,t, y1:t−1) =

∫
p(xl,t|xl−1,t,ΘΘΘl−1)

× q(ΘΘΘl−1|xl−1,t, y1:t−1)dΘΘΘl−1. (6)

Then we update the posterior of {xl,t}Ll=0 from layer L to
layer 0 by

q(xl,t|y1:t) ∝
∫

p(xl+1,t|xl,t)q(xl,t|y1:t−1)q(xl+1,t|y1:t)dxl+1,t,

≈ p(x̂l+1,t|xl,t)q(xl,t|y1:t−1), (7)

where l = L, . . . , 0, and x̂l+1,t is an estimate of
xl+1,t obtained as explained below. In particular, if
q(H|x0,t−1, y1:t−1) and q(ΘΘΘl−1|xl−1,t, y1:t−1) are Gaussian
distributions, p(xl,t|xl−1,t, y1:t−1) is also Gaussian. However,
the posterior q(xl,t|y1:t−1) is not Gaussian because of the
nonlinearity of ϕϕϕv. This leads to the use of particle filtering
[6].

793

B. Generation of particles

Suppose we have sampled M particles x(m)
0,t−1 from

q(x0,t−1|y1:t−1) at time t−1, then we generate particles x(m)
l,t

by (4), i.e.,

x(m)
0,t ∼ p(x0,t|x(m)

0,t−1), (8)

x(m)
l,t ∼ p(xl,t|x(m)

l−1,t), (9)

where l = 1, . . . , L.

C. Estimation of the predictive PDF

After the transition step, we have received M samples x(m)
L,t

at time t. The predictive pdf of yt is then given by

p(yt|y1:t−1) =
1

M

M∑
m=1

p(yt|x(m)
L,t). (10)

D. Estimation of the filtering PDFs

Upon receiving yt, we assign the weights for each par-
ticle x(m)

l,t by the likelihood of x(m)
l,t layer by layer, where

l = L, . . . , 0 and the weights are given by

w
(m)
l,t ∝ p(x̂l+1,t|x(m)

l,t). (11)

After normalizing the weights, the minimum mean square
estimate (MMSE) of xl,t is obtained by

x̂l,t =
M∑

m=1

w
(m)
l,t x(m)

l,t . (12)

The approximation of the posterior of q(xl,t|y1:t) in (7) is

qM (xl,t|y1:t) =

M∑
m=1

w
(m)
l,t δ(xl,t − x(m)

l,t).

E. Updating the parameters

Given the derived posterior and point estimate of xl,t, we
proceed with updating the posterior of the parameter variables
H and ΘΘΘ. We have,

q(ΘΘΘl|y1:t) =
∫

q(ΘΘΘl|xl,t, xl+1,t)q(xl,t|y1:t)q(xl+1,t|y1:t)dxl:l+1,t

≈ q(ΘΘΘ|y1:t−1)p(x̂l+1,t|x̂l,t). (13)

The posterior for H is similarly given by

q(H|y1:t) =

∫
q(H|x0,t, x0,t−1)q(x0,t|y1:t)q(x0,t−1|y1:t)dx0,t−1:t

≈ q(H|y1:t−1)p(x̂0,t|x̂0,t−1), (14)

Therefore, equations (13) and (14) exploit the conjugate
property of the Gaussian distribution, and the posterior of
ΘΘΘ and H are always Gaussian distributions. The details of
implementations are as follows: Suppose we have estimated
x̂t and x̂t−1. Upon receiving yt, we update ηηηi and θθθjl by the
Bayesian rule. Let ηηηi ∼ N(µµµi

η,Σ
i
η) and θθθjl ∼ N(µµµj

θ,l,Σ
j
θ,l).

The Bayesian formula provides a linear update for µµµi
η,t and

Σi
η,t by

µµµi
η,t = µµµi

η,t−1 +
Σi

η,t−1ϕϕϕv(x̂0,t−1)(x̂
i
0,t −ϕϕϕ⊤

v (x̂0,t−1)µµµ
i
η,t−1)

ϕϕϕ⊤
v (x̂0,t−1)Σi

η,t−1ϕϕϕv(x̂0,t−1) + σ2
ϵ

,

Σi
η,t = Σi

η,t−1 −
Σi

η,t−1ϕϕϕv(x̂0,t−1)ϕϕϕ
⊤
v (x̂0,t−1)Σ

i
η,t−1

ϕϕϕ⊤
v (x̂0,t−1)Σi

η,t−1ϕϕϕv(x̂0,t−1) + σ2
ϵ

,

(15)
and for µµµj

θ and Σj
θ according to

µµµj
θ,l,t = µµµj

θ,l,t−1 +
Σj

θ,l,t−1ϕϕϕv(x̂l,t)(x̂l+1,t −ϕϕϕ⊤
v (x̂l,t)µµµj

θ,l,t−1)

ϕϕϕ⊤
v (x̂l,t)Σj

θ,l,t−1ϕϕϕv(x̂l,t) + σ2
l

,

Σj
θ,l,t = Σj

θ,l,t−1 −
Σj

θ,l,t−1ϕϕϕv(x̂l,t)ϕϕϕ⊤
v (x̂l,t)Σ

j
θ,l,t−1

ϕϕϕ⊤
v (x̂l,t)Σj

θ,l,t−1ϕϕϕv(x̂l,t) + σ2
l

.

(16)

F. Smoothing

We adopt the backward smoothing [5], which assigns the
weights for particles x(m)

0,t−1 at time t − 1 after updating the
states x̂0,t and the parameters H,ΘΘΘ at time t. The weights are
proportional to the transition likelihood, i.e.,

w
(m)
0,t−1 ∝ p(x̂0,t|x(m)

0,t−1)

≈
∫

p(x̂0,t|x(m)
0,t−1,H)q(H|y1:t)dH.

As a consequence, the MMSE of x0,t−1 is

x̂0,t−1 =

M∑
m=1

w
(m)
0,t−1x(m)

0,t−1. (17)

The procedure is summarized in Algorithm 1.

Algorithm 1: Single Sequential GPSSM

for m = 1 to M do
Sample x(m)

0,0 ∼ p(x0,0);
Initialize the weight of x(m)

0,0 as x(m)
0,0 = 1/M ;

for t = 1 to T do
for i = 1 to number of iterations do

Update States:
Sample x(m)

l,t from (8) and (9);
Predict yt via (10);
Assign weights to x(m)

l,t by (11);
Estimate the expectation x̂l,t by (12);
Update Parameters:
Update H and ΘΘΘ via (15), (16);

Resample x(m)
l,t based on their weights;

Smoothing:
Update x̂0,1:t−1 sequentially by (17).

794

0 20 40 60 80 100

−2

0

x[1]
t PF Proposed method

0 20 40 60 80 100
t

−4

−2

x[2]
t PF Proposed method

Fig. 2. Results of the state space model de-
scribed by (20) and obtained by a particle filter
and by the proposed method.

0 20 40 60 80 100

−1.5

−1.0

−0.5

0.0

x[
0,
1
t
] x̂[

0,
1
t
]

0 20 40 60 80 100
t

−3.5

−3.0

−2.5

x[
0,
2
t
] x̂[

0,
2
t
]

0 20 40 60 80 100

0

1

2

x[1]
1,t x̂[1]

1,t

0 20 40 60 80 100

−1

0

x[2]
1,t x̂[2]

1,t

0 20 40 60 80 100
t

−2

0

2
x[3]

1,t x̂[3]
1,t

Fig. 3. Results of the DSS model described by (21). On left are the true values and the estimates
of the root processes, and on the right, the true values and the estimates of the proposed method.

IV. ENSEMBLE LEARNING

Use of only a single set of v = {v(1:J)l }Ll=0 might produce
significant bias. In order to mitigate this problem, we introduce
an ensemble of different sets of v. Denote vs as the sth
set of pre-selected parameters v sampled from PSD and its
posterior contribution or weight as ws

t = p(s|y1:t, x̂1:t) at time
t, where x̂1:t = x̂0:L,1:t. Consequently, the prediction at time
t is derived from the total probability theorem, that is,

p(yt|y1:t−1, x̂1:t−1)

=

S∑
s=1

p(s|y1:t−1, x̂1:t−1)p(yt|s, y1:t−1, x̂1:t−1)

=

S∑
s=1

ws
t−1p(yt|s, y1:t−1, x̂1:t−1),

(18)

and the posterior weight is updated by

ws
t = p(s|y1:t, x̂1:t)

=
p(s|y1:t−1, x̂1:t−1)p(yt|s, y1:t−1, x̂1:t−1)

p(yt|y1:t−1, x̂1:t−1)

∝ ws
t−1p(yt|s, y1:t−1, x̂1:t−1).

(19)

We note that the estimation of the latent states by the random
feature-based methods are identifiable up to scale, shift, and
rotation [10]. To this end, we arbitrarily fix the rotation of
X by taking the singular value decomposition of the MMSE
estimate, X̂ = USV⊤, and setting X to be the columns of
the left singular vectors with the largest singular values. The
inference of the hyper-parameters σ2

l and σ2
ϵ is based on the

standard stochastic gradient descent.

V. NUMERICAL RESULTS

A. Estimation of a state space model

We tested the proposed methodology on the following state
space model:

x
[1]
t = 0.9x

[1]
t−1 + 0.5 sin(x

[2]
t−1) + u

[1]
t ,

x
[2]
t = 0.1(x

[1]
t−1)

3 − 0.9x
[2]
t−1 + u

[2]
t ,

y
[1]
t = 1.8 cos(x

[1]
t)− 0.7 sin(x

[2]
t) + v

[1]
t ,

y
[2]
t = 0.5x

[1]
t − 1.3 sin(x

[1]
t) + v

[2]
t ,

y
[3]
t = 2.0x

[1]
t − 0.4x

[2]
2,t + v

[3]
t ,

y
[4]
t = 0.05

(
x
[1]
t

)3

+ v
[4]
t ,

y
[5]
t = x

[2]
t /(1 + (x

[2]
t)2) + v

[5]
t ,

(20)

which is a model with two-dimensional state process, and
a five-dimensional observed time signal (thus, dx = 2 and
dy = 5). The noises were zero-mean Gaussian with variances
equal to 0.01. We sampled the random features from the power
spectral density of a kernel with radial basis functions and with
all of its hyperparameters set to one. Since the dimension of
the state space was 2, we sampled R = 50 two-dimensional
features. As a benchmark for comparison, we applied a particle
filter which was designed for the exact functions in the state
and observation equations. In implementing the particle filter,
we used M = 100 particles.

Figure 2 shows the true values of the state x
[1]
t and x

[2]
t

over time. The figures also provide the obtained estimates
by both the particle filter and our method. Remarkably, the
performance of our method is very close to that of the particle

795

filter even though our method did not use knowledge about the
functions in the state space model.

B. Estimation of processes of a DSS model

We generated data from a DSS model with two hidden
layers, the deepest hidden layer denoted as x0 with dx0

= 2,
the middle hidden layer x1 with dx1

= 3, and dy = 4. The
model is given by

Layer 0 : x
[1]
0,t = 0.9x

[1]
0,t−1 + 0.5 sin(x

[1]
0,t−1) + u

[1]
2,t,

x
[2]
0,t = 0.5 sin(x

[1]
0,t−1) + 0.9x

[2]
0,t−1] + u

[1]
2,t,

Layer 1 : x
[1]
1,t = 1.8 cos(x

[1]
0,t)− 0.7 sin(x

[1]
0,t) + u

[1]
1,t,

x
[2]
1,t = 0.5x

[1]
0,t − 1.3 sin(x

[2]
0,t) + u

[1]
1,t

x
[3]
1,t = 2x

[1]
0,t − 0.4x

[2]
0,t + u

[2]
1,t

Observations : y
[1]
t = 0.01(x

[1]
1,t)

2 + 1.2x
[3]
1,t + v

[1]
t ,

y
[2]
t = 1.2 sin(x

[1]
1,t)− 0.5x

[2]
1,t + 0.7x

[3]
1,t + v

[2]
t ,

y
[3]
t = x

[1]
1,tx

[2]
1,t + v

[3]
t ,

y
[4]
t = 5x

[2]
1,t/(1 + x

[2]2

1,t) + v
[4]
t ,

(21)
and otherwise, the same parameters were used as in the first
experiment. The results are shown in Fig 3. They clearly show
that the proposed method is capable of accurately estimating
all the latent processes.

VI. SUMMARY

In this paper, we addressed the estimation of the unknowns
of a deep SSM using GPs modeled by random features. We
presented an algorithm that relies on a two-stage procedure
where at each time instant we first estimate the hidden states
and then we update the parameters of the GPs. We presented
two examples, and they demonstrate that the proposed method
can track the estimated processes accurately.

REFERENCES

[1] T. Beckers and S. Hirche. Stability of Gaussian process
state space models. In 2016 European Control Confer-
ence (ECC), pages 2275–2281. IEEE, 2016.

[2] K. Berntorp. Online Bayesian inference and learning
of Gaussian-process state–space models. Automatica,
129:109613, 2021.

[3] S. A. Billings. Nonlinear System Identification: NARMAX
Methods in the Time, Frequency, and Spatio-Temporal
Domains. John Wiley & Sons, 2013.

[4] T. D. Bui, J. Yan, and R. E. Turner. A unifying frame-
work for Gaussian process pseudo-point approximations
using power expectation propagation. The Journal of
Machine Learning Research, 18(1):3649–3720, 2017.

[5] C. M. Carvalho, M. S. Johannes, H. F. Lopes, and N. G.
Polson. Particle learning and smoothing. Statistical
Science, 25(1):88–106, 2010.

[6] P. M. Djurić, J. H. Kotecha, J. Zhang, Y. Huang, T. Ghir-
mai, M. F. Bugallo, and J. Miguez. Particle filtering.
IEEE Signal Processing Magazine, 20(5):19–38, 2003.

[7] R. Frigola, Y. Chen, and C. E. Rasmussen. Variational
Gaussian process state-space models. Advances in Neural
Information Processing Systems, 27, 2014.

[8] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Ras-
mussen. Bayesian inference and learning in Gaussian
process state-space models with particle mcmc. Advances
in Neural Information Processing Systems, 26, 2013.

[9] R. Frigola, F. Lindsten, T. B. Schön, and C. E. Ras-
mussen. Identification of Gaussian process state-space
models with particle stochastic approximation EM. IFAC
Proceedings Volumes, 47(3):4097–4102, 2014.

[10] G. Gundersen, M. Zhang, and B. Engelhardt. Latent
variable modeling with random features. In International
Conference on Artificial Intelligence and Statistics, pages
1333–1341. PMLR, 2021.

[11] R. Herbrich, N. Lawrence, and M. Seeger. Fast sparse
Gaussian process methods: The informative vector ma-
chine. Advances in Neural Information Processing Sys-
tems, 15, 2002.

[12] M. Karl, M. Soelch, J. Bayer, and P. Van der Smagt.
Deep variational Bayes filters: Unsupervised learning
of state space models from raw data. arXiv preprint
arXiv:1605.06432, 2016.

[13] J. Kocijan. Modelling and Control of Dynamic Systems
Using Gaussian Process Models. Springer, 2016.

[14] M. Lázaro-Gredilla, J. Quinonero-Candela, C. E. Ras-
mussen, and A. R. Figueiras-Vidal. Sparse spectrum
Gaussian process regression. The Journal of Machine
Learning Research, 11:1865–1881, 2010.

[15] L. Ljung. System identification: Theory for the user. PTR
Prentice Hall, Upper Saddle River, NJ, 1999.

[16] Q. Lu, G. Karanikolas, Y. Shen, and G. B. Giannakis.
Ensemble Gaussian processes with spectral features for
online interactive learning with scalability. In Interna-
tional Conference on Artificial Intelligence and Statistics,
pages 1910–1920, 2020.

[17] D. Nguyen-Tuong, M. Seeger, and J. Peters. Model learn-
ing with local Gaussian process regression. Advanced
Robotics, 23(15):2015–2034, 2009.

[18] S.-S. Park, Y.-J. Park, Y. Min, and H.-L. Choi. Online
Gaussian process state-space model: Learning and plan-
ning for partially observable dynamical systems. arXiv
preprint arXiv:1903.08643, 2019.

[19] S. S. Rangapuram, M. W. Seeger, J. Gasthaus, L. Stella,
Y. Wang, and T. Januschowski. Deep state space models
for time series forecasting. Advances in Neural Informa-
tion Processing Systems, 31, 2018.

[20] E. Snelson and Z. Ghahramani. Local and global sparse
Gaussian process approximations. In Artificial Intelli-
gence and Statistics, pages 524–531. PMLR, 2007.

[21] C. K. Williams and C. E. Rasmussen. Gaussian Pro-
cesses for Machine Learning, volume 2. MIT Press
Cambridge, MA, 2006.

[22] Z. Zhao, M. Emzir, and S. Särkkä. Deep state-space
Gaussian processes. Statistics and Computing, 31(6):1–
26, 2021.

796

