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Abstract—State-space models are ubiquitous for modelling com-
plex systems that evolve over time. In such models, key parameters
are usually unknown and must be estimated. In particular, linear
systems are parametrised by the transition matrix that encodes
the dependencies among state dimensions. Due to physical and
computational constraints, it is desirable to estimate this matrix
by promoting sparsity in its components, in such a way that the
interactions between elements of the state-space are reduced. In
this work, we propose a novel Bayesian methodology to estimate
model parameters and promote sparsity. The method, called SpaRJ,
is based on reversible jump Markov chain Monte Carlo, and allows
for the exploration of the space of sparse transition matrices in an
efficient manner via the adaptation of the implicit model dimension.
The methodology has strong theoretical guarantees and exhibits
good performance in numerical examples.

Index Terms—Bayesian methods, graphical inference, Kalman
filtering, parameter estimation, sparsity detection, state-space
modelling.

I. INTRODUCTION

State-space modelling allows for a flexible description and
statistical analysis of dynamic systems. These models incorpo-
rate both a hidden state that evolves over time, and a sequence
of observations that are linked to the hidden states [1]. The state
dynamics are often considered to be Markovian.

In some cases, the state-space model (SSM) is perfectly
described, with the inferential goal of estimating the sequence
of underlying hidden states. In the Bayesian paradigm, this
estimation is done in a probabilistic manner, by providing
a sequence of posterior distributions [2]. For a given time-
step, if only past and present observations are used in the
estimation procedure, this is known as a filtering problem.
If all dynamics are linear and the noises are Gaussian, we
can exactly compute the filtering distributions [3]. This linear-
Gaussian state-space model (LGSSM) provides a relatively
simple framework, which is useful when modelling linear
systems, or those where linearisation is reasonable. Where this
is not appropriate, extensions to non-linear Gaussian dynamics,
such as the extended Kalman filter [4] and the unscented Kalman
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filter [5], are typically used. For even more generic SSMs, such
as those with non-Gaussian noises, there exist particle methods
that allow for the approximation of the filtering distribution via a
number of Monte Carlo samples [6], [7], [8]. Note that, however,
all of these methods assume the model parameters to be known.

In practice, the model parameters are often unknown, and
must be estimated. Obtaining estimates of these parameters is
in general a difficult task [2], [7], [9]. Also note that complex
dynamic systems are often composed of many interacting simple
units, with each of those units directly affected by only a subset
of the rest [10]. Therefore, when estimating the parameters in
such models, it is desirable to obtain sparse estimates, which
admit several advantages [11]. First, by promoting sparsity,
we improve the quality of the inference, since it translates
into reducing the dimension of the parameter space. Second,
the sparsity also gives an interpretation of the connectivity of
the state variables in the line of graphical modelling methods
[12], which are used in diverse applications such as biology
[13], social networks [14], and neuroscience [15]. Third, sparse
estimates allow us to recover this ‘interacting blocks’ structure.

In this work, we propose the sparse reversible jump (SpaRJ)
method, a novel Markov chain Monte Carlo (MCMC) algorithm
for estimating the transition matrix of a LGSSM. The proposed
method allows for the inclusion of prior knowledge of the
transition matrix, and in particular, we aim at recovering a
sparse matrix. From a Bayesian perspective, we obtain true
sparse samples from a posterior distribution of this matrix, unlike
in traditional approaches. This is achieved by implementing a
reversible jump MCMC (RJMCMC) [16] that runs a Kalman
filter for each proposed sample, thus allowing to not only obtain
true sparse samples but to also explore different levels of sparsity
in the transition matrix. The strong theoretical guarantees of
RJMCMC are inherited in the proposed SpaRJ algorithm. In
addition, SpaRJ exhibits excellent performance in challenging
numerical experiments of increasing dimension.

The rest of this work is structured as follows. In Section
II we present the problem and background. In Section III we
present our method for sparse Bayesian inference in LGSSMs.
In Section IV we provide numerical results for our method.
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II. BACKGROUND

A. State-Space Modelling and Filtering

Let us consider the additive linear-Gaussian (LG) state-space
model (SSM) given by

xt = Axt−1 + qt,

yt = Hxt + rt,
(1)

for t = 1, . . . , T , where xt ∈ Rdx is the hidden state with
associated observation yt ∈ Rdy at time t, A ∈ Rdx×dx is
the transition matrix, H ∈ Rdy×dx is the observation matrix,
qt ∼ N (0,Q) is the state noise, and rt ∼ N (0,R) is the
observation noise. The state prior is x0 ∼ N (x̄0,P0), with x̄0

and P0 typically assumed to be known.
A common task in state-space modelling is the estimation

of the distribution of xt conditional on y1:t, p(xt|y1:t). In the
case of the LGSSM, this distribution can be obtained using
the Kalman filter [2], [3]. From these equations, we obtain the
conditional likelihood of the observations, which allows us to
estimate the model parameters where they are unknown [2]. In
LGSSMs, H and R are often assumed to be known parameters
of the observation instrument, but Q and A are often unknown.
For the purposes of this work, we assume that all parameters
except A are known, or are suitably estimated.

B. Parameter Estimation in State-Space Models

The estimation of the parameters of a state-space model is
in general a difficult task, as the likelihoods and dependency
structures involved are, in general, quite complex [2], [17].
Many methods are used, which we can broadly classify as point
estimation methods and distributional methods. Our method is a
Bayesian distributional method, which gives several advantages.

Distributional methods estimate the probability density of
the parameters given the data, i.e., p(A|y1:T ) in our case,
often through the generation of Monte Carlo samples. These
samples can be used to compute estimates of various statistics
of the parameters, such as mean and (co)variance. Markov chain
Monte Carlo (MCMC) methods are often used to obtain these
samples [17]. MCMC comprises a class of sampling methods
that construct a Markov chain that converges in distribution to
the desired distribution at equilibrium [18]. The elements of this
chain are taken to be Monte Carlo samples from the desired
distribution.

C. Sparse Modelling

Sparsity is a desirable property when fitting and designing
statistical models. This is due to sparsity being ingrained in the
model selection process for nearly all models. For example, a
linear regression in which terms are excluded based on them
being insignificant is also a sparse model. Several estimation
methods allow for the systematic detection of sparsity [19], [20],
permitting the simplification of complex models and giving
insight into the behaviour of the system [21], [22].

There are several well studied approaches to estimate models
with sparsity. A common approach is to estimate the model
parameters under a sparsity inducing penalty, with the classic

example of such a penalty being the LASSO [19]. This approach
is prevalent, with several extensions to Bayesian modelling in
the form of sparsity inducing priors [20].

Sparsely estimating the state transition matrix A of a LGSSM
allows for the resulting estimate to be interpreted as a weighted
directional graph of the between-step connectivity of the hidden
states [11]. This can be used further to recover Granger-causal
relationships between the state variables [23], or to determine
an optimal linear combination of the state variables for dimen-
sionality reduction.

D. Reversible Jump Markov Chain Monte Carlo

Reversible jump Markov chain Monte Carlo (RJMCMC) [16]
was first proposed as a method for Bayesian model selection,
and has since seen use in fields such as ecology [24], Gaussian
mixture modelling [25], and hidden Markov modelling [26].

RJMCMC is primarily used to explore and sample variable di-
mension models, where the model M , and hence the dimension
of the associated parameter space Θ, is unknown. Let Θ(i) be the
parameter space associated with model M (i), and θ(i) ∈ Θ(i) an
associated realisation of the model parameters. The probability
of jumping from model M (i) to M (j) must be calculable a
priori, and is denoted by πi,j . Let M (1) be the current model,
and M (2) be a candidate model that we could potentially jump
to. When moving to a lower or equally dimensional space,
i.e., dim(Θ(1)) ≥ dim(Θ(2)), the parameters can be mapped
deterministically via

θ(2) = T1,2(θ(1)),

where T1,2 is a bijection [18]. If moving to a higher dimensional
space, i.e., dim(Θ(1)) < dim(Θ(2)), then no bijection between
Θ(1) and Θ(2) exists. Reversible jump MCMC addresses this
by introducing a stochastic component [16]; the spaces Θ(1)

and Θ(2) are augmented with simulated draws from selected
distributions such that

(θ(2), u2) = T1,2(θ(1), u1), u1 ∼ g1,2(·), u2 ∼ g2,1(·),

where T1,2 is a bijection and gi,j(·) are distributions chosen a
priori.

These mappings and stochastic draws alter the properties of
the Markov chain, and if not corrected the chain will not exhibit
detailed balance. In order to correct for this the acceptance ratio
for the jump from model M (1) to model M (2) is modified, and
is given by

α(1,2) =

∣∣∣∣∂T1,2(θ(1), u1)

∂(θ(1), u1)

∣∣∣∣ g2,1(u2)

g1,2(u1)

π2,1

π1,2

p2(θ(2))

p1(θ(1))
, (2)

where pi(θ
(i)) is the density associated with model M (i)

evaluated at θ(i). We can incorporate the πi,j ratio into the prior,
as it is calculable a priori. The jump from model 1 to model
2 is accepted with probability min(α(1,2), 1), and is otherwise
rejected. On rejection, the current value of the chain is kept, as
standard for a Metropolis type algorithm.
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E. Model Definitions and Notation

We denote by Mn the model selected by the algorithm at
iteration n. This model is uniquely defined by Mn, the list
of indices of dense elements in An. The number of elements
of Mn, denoted by |Mn|, is therefore the number of dense
elements at iteration n, or the number of dense elements of An.

Table I
NOTATION REFERENCE

Notation Meaning
Mn Model at iteration n
Mn Set of pairs of indices of dense elements in Mn

|Mn| Number of dense elements at iteration n

III. THE SPARJ ALGORITHM

We now present the SpaRJ algorithm, a novel RJMCMC
method that sparsely estimates the posterior of the transition
matrix of a linear-Gaussian state-space model of the form in Eq.
(1). The method is systematically described below.

A. Algorithmic Description of SpaRJ

The algorithm is initialised at the fully dense model M0. We
obtain the initial log-likelihood l0 by running a Kalman filter
with A0, yielding l0 = log(p(y1:T |A0)).

The method iterates N times to obtain N samples {An}Nn=1.
Each iteration is split into three steps: model proposal (Step 1),
parameter proposal (Step 2), and accept/reject (Step 3), after
which the next iteration begins.
Step 1: Propose M∗. At iteration n, the previous model Mn−1

is retained with probability (w.p.) π0. If the previous model is
not retained (w.p. 1− π0), then we choose the proposed model
M∗ to be sparser w.p. π−1, and denser otherwise. We find that
π0 = 0.8 gives an acceptance rate close to the optimal for
Random Walk Metropolis-Hastings (RWMH) of 0.234 [27]. In
general, we recommend using π−1 = 0.5 so that the walk over
the model space is unbiased.
Step 2: Propose A∗. The method to propose A∗ is determined
by M∗. If the proposed model M∗ is the same as the previous
model Mn−1, then A∗ is sampled from the conditional posterior
p(A|M∗). Our preferred sampling method is a RWMH sampler,
chosen for simplicity and extensibility. In addition, the RWMH
sampler only requires a single run of the Kalman filter per
iteration, the evaluation of which is the most computationally ex-
pensive component of the algorithm. We perturb the parameters
using an element-wise Laplace random walk, which admits the
following element-wise distribution for the parameter proposal:

(an)ij ∼

{
Laplace((an−1)ij , σ), (i, j) ∈Mn,

0, otherwise.
(3)

If the proposed model M∗ is different from the previous
model Mn−1, then the parameters θn−1 are identically mapped
to θ∗, augmented with stochastic draws if the dimension of
the parameter space increases, and with selected elements
removed if the dimension decreases. This identity mapping
turns the Jacobian term in Eq. (2) equal to 1. We draw from
a Laplace(0, σ) distribution.

Step 3: Metropolis accept-reject. Once the model and parame-
ter values have been proposed, a Metropolis-Hastings acceptance
step is performed. This accept-reject is independent of any that
may have taken place in the previous step. We run a Kalman filter
with A∗ and extract the log-likelihood of the proposed sample,
l∗ = log(p(y1:T |A∗)). We then construct the log-acceptance
ratio, log(α) = l∗ − ln−1 + λ(‖An−1‖1 − ‖A∗‖1) + c, where
the c term is the distributional term from Eq. (2).

Algorithm 1 SpaRJ algorithm
Input: y1:T ,A0, π0, π−1, N, λ, σ,P0,Q,R,H, x̄0

Output: Set ofN samples {An, ln,Mn}Nn=1
Initialisation
InitialiseM0 as fully dense
Evaluate Kalman filter with A0, obtaining l0 := log(p(y1:T |A0))
for n = 1, ..., N do

Set c := 0.
Step 1: Propose model
Retain w.p. π0

if Retain then
SetM∗ := Mn−1

else
Step 1.1: Determine jump direction
if An−1 Densest OR Sparsest then

Jump sparser or denser respectively
else

Jump sparser with probability π−1, otherwise jump denser
end if
Step 1.2: Perform jump
if Jump sparser then (Step 1.2-s)

Select e ∈ Mn−1

SetM∗ such thatM∗ =Mn−1 \ e
else (Step 1.2-d)

Select e ∈ M0 \Mn−1

SetM∗ such thatM∗ =Mn−1 ∪ e
end if

end if
Step 2: Propose A∗

if Retain then
Step 2.1: Sample posterior
Propose A∗ using Eq. (3)

else
Step 2.2: Map parameters
if Jump sparser then (Step 2.2-s)

Set A∗ to An−1 with element ae set to 0.
Set c := log(Laplace(ae; 0, σ)).

else (Step 2.2-d)
Draw u ∼ Laplace(0, σ).
Set A∗ to An−1 with element ae set to u.
Set c := − log(Laplace(u; 0, σ)).

end if
end if
Step 3: MH accept-reject
Evaluate Kalman filter with A := A∗, obtaining l∗ := log(p(y1:T |A∗))
log(α) := l∗ − ln−1 + λ(‖An−1‖1 − ‖A∗‖1) + c
Accept with probability α
if Accept then

SetMn := M∗, An := A∗, ln := log(p(y1:T |A∗))
else

SetMn := Mn−1,An := An−1, ln := ln−1

end if
end for

B. Incorporating Prior Knowledge

The hyper-parameters that must be chosen are: π0, the
probability of retaining the current model, π−1, the probability
of proposing a sparser model given the current model is not
retained, λ, the penalty parameter, and σ, the regeneration scale.

We use a LASSO penalty, which is equivalent to a Laplace
prior [20]. We incorporate our prior belief in the value and
sparsity of A via this penalty. This penalty could be changed
without modification to the wider algorithm, and is not necessary
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for the recovery of sparsity, which is due to the model jumping.
For the LASSO penalty we find λ ∈ [0.1, 1] works well.

Prior knowledge is also incorporated in the selection of the π0

and π−1 hyper-parameters. π−1 controls the bias of the sampler,
directing it to sparser models when π−1 > 0.5 and denser
models when π−1 < 0.5. Therefore if the matrix is believed
to be very sparse π−1 can be chosen to reflect this. If there is
no prior knowledge of the sparsity we recommend π−1 := 0.5.
The π0 parameter determines the average time spent under an
accepted model. A larger value leads to better within-model
behaviour, as on average more samples will be obtained, but
requires more iterations to explore sparsity, as the model is
switching less often. We recommend π0 := 0.8 as we find this
yields an average within-model acceptance rate close to the
optimum for RWMH of 0.234 [27].

C. Inherited Guarantees

As our algorithm is a RJMCMC method, which themselves
fall under Metropolis-Hastings methods [28], we inherit a
number of theoretical guarantees. First, every within-model
sampling density converges to the true conditional within-model
distribution. This follows from use of a symmetric RWMH
sampler for the within-model sampling, which is well studied
and known to exhibit the required properties of ergodicity and
detailed balance.

Second, our overall sampling Markov chain exhibits detailed
balance. This follows from the design of the RJMCMC transition
kernel [16]. This property means that the limiting distribution of
the Markov chain is exactly the desired distribution. In addition,
the model sampling chain is ergodic, as all elements of the model
space can be reached from all other elements in a finite number
of moves. This is composed with the ergodicity of the within-
model sampler to obtain the ergodicity, and hence distributional
correctness, of the overall sampling chain.

D. Discussion

Whilst our method inherits asymptotic guarantees from
RJMCMC, these properties do not provide a guarantee of
convergence in finite time. We find that 15, 000 iterations yields
good results in moderately-high dimensional cases, specifically
dx < 50. Our method is also relatively inexpensive computation-
ally, requiring minimal additional computation when compared
to a standard MCMC method applied to state-space models.
This small amount of overhead, occurring as a result of drawing
from and evaluating the density of explicitly known distributions,
allow for us to explore the sparsity of a LGSSM in a Bayesian
framework. This capability is, to our knowledge, new within the
domain of state-space modelling. This method hence allows
for inference that was not previously possible, such as the
probabilistic quantification of sparsity in a Bayesian manner,
as well as the distribution of sparse elements.

IV. NUMERICAL STUDY

We generate observations following Eq. (1), with dx = dy,
H = Iddx , x̄0 = 1dx , T = 100 The state covariance matrix Q
is specified per study. In these experiments we run SpaRJ for

N = 15, 000 iterations, discarding the first 5, 000 as burn-in.
A0 is generated using an EM scheme, itself initialised with a
random element-wise standard normal matrix. We set π0 = 0.8
and π−1 = 0.5 in all cases.

We compare the proposed method with GraphEM [11], an
algorithm with similar goals based on proximal optimization. We
compare the metrics of precision, recall, specificity, and F1 score,
as these are common metrics for sparsity detection as a subset of
classification. We take an element to be sparse under our method
by majority vote of the samples. In all cases we average the
metrics over 200 independent runs of each algorithm.

A. Known Isotropic State Covariance

We generate the A matrix for each system by drawing from an
element-wise standard normal distribution, insert some sparsity
in the matrix, and then dividing by the magnitude of the maximal
singular value, which ensures the stability of the system in
each run. We test the performance of the method with isotropic
covariance matrices Q and R.
Dimension 3 matrix. We generate A for dimension dx = 3,
with sparsity in one element per row and per column. We set
Q(true) = R(true) = Iddx ,P(true) = 10−8Iddx , and λ = 1.
Dimension 6 block diagonal matrix. We generate A for dimen-
sion dx = 6 as a block diagonal matrix with three 2× 2 blocks.
We set Q(true) = R(true) = 10−2Iddx , P(true) = 10−8Iddx ,
and λ = 0.367 ≈ exp(−1).
Dimension 12 block diagonal matrix. We generate A for
dimension dx = 12 as a block diagonal matrix with six 2 × 2
blocks. We set Q(true) = R(true) = 10−2Iddx , P(true) =
10−8Iddx , and λ = 0.367.

Table II
SPARSITY STATISTICS OVER VARIABLE SYSTEMS.

transition matrix structure method spec. recall prec. F1
3× 3 matrix GraphEM 0.86 0.98 0.79 0.88

SpaRJ 0.98 0.99 0.99 0.99
6× 6 block diagonal GraphEM 0.83 0.90 0.91 0.91

SpaRJ 0.88 0.96 0.94 0.95
12× 12 block diagonal GraphEM 0.85 0.77 0.96 0.85

SpaRJ 0.83 0.89 0.91 0.90

Figure 1. Sparsity statistics over variable series length T for the 3× 3 system.
Note the rapid convergence to nearly optimal metrics.

For the 3 × 3 system we also demonstrate our method for
different values of T ∈ [10, 150]. In Figure 1, we show averaged
metrics over 100 independent runs for both methods. We see that
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the longer the series the better the overall performance, showing
numerically the convergence to the true distribution.

Table II shows a good performance of SpaRJ and its capability
to extract the sparsity structure in all examples. Figure 1
also exhibits the desired increase in performance as more
observations are collected.

B. Unknown Anisotropic State Covariance

In many scenarios, the true value of the state covariance Q is
unknown. We generate anisotropic covariance matrices Q(true)

following [29], with Uniform(0.5, 1.5) eigenvalues.
We run an EM algorithm to estimate A and Q by AEM and

QEM, respectively. We initialise the EM algorithm at the identity,
and then compute the MAP estimates, alternately estimating A
and Q until ‖AEM

n − AEM
n−1‖2 + ‖QEM

n − QEM
n−1‖2 ≤ 10−3

is satisfied. We set A0 = AEM. We set Q = QEM, and
perform inference on A under this value of Q. Other than Q, all
parameters are set as previously.

Table III
SPARSITY STATISTICS OVER VARIABLE SYSTEMS WITH ESTIMATED

ANISOTROPIC COVARIANCES.

transition matrix structure method spec. recall prec. F1
3× 3 matrix GraphEM 0.75 0.72 0.62 0.65

SpaRJ 0.87 0.98 0.80 0.89
6× 6 block diagonal GraphEM 0.68 0.38 0.70 0.49

SpaRJ 0.75 0.53 0.81 0.63
12× 12 block diagonal GraphEM 0.76 0.34 0.88 0.49

SpaRJ 0.6 0.53 0.88 0.65

We see that our method performs well under these challenging
conditions, consistently outperforming existing methods. The
performance degrades significantly in this scenario, but our
method retains the edge in statistical performance. The perfor-
mance degradation could be lessened by using better estimates
of Q; this is intended to show a worst-case scenario.

V. CONCLUSION

In this work, we have proposed the SpaRJ algorithm, a new
Markov-chain Monte Carlo method for obtaining sparse samples
of the transition matrix encoding hidden state relationships
in linear-Gaussian state-space models. Using reversible jump
MCMC along with a structured model space allows for explo-
ration and encapsulation of sparsity in the resulting samples.
The algorithm retains strong theoretical guarantees, shows great
potential for extension, and numerical results evidence that the
method performs well in challenging scenarios.
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