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Abstract—Massive datasets are typically distributed geograph-
ically across multiple sites, where scalability, data privacy and
integrity, as well as bandwidth scarcity typically discourage
uploading these data to a central server. This has propelled the
so-called federated learning framework where multiple workers
exchange information with a server to learn a “centralized”
model using data locally generated and/or stored across workers.
This learning framework necessitates workers to communicate
iteratively with the server. Although appealing for its scalability,
one needs to carefully address the various data distribution
shifts across workers, which degrades the performance of the
learnt model. In this context, the distributionally robust op-
timization framework is considered here. The objective is to
endow the trained model with robustness against adversarially
manipulated input data, or, distributional uncertainties, such as
mismatches between training and testing data distributions, or
among datasets stored at different workers. To this aim, the
data distribution is assumed unknown, and to land within a
Wasserstein ball centered around the empirical data distribution.
This robust learning task entails an infinite-dimensional optimiza-
tion problem, which is challenging. Leveraging a strong duality
result, a surrogate is obtained, for which a primal-dual algorithm
is developed. Compared to classical methods, the proposed
algorithm offers robustness with little computational overhead.
Numerical tests using image datasets showcase the merits of the
proposed algorithm under several existing adversarial attacks
and distributional uncertainties.

I. INTRODUCTION

Machine learning models and tasks hinge on the premise
that the training data are trustworthy, reliable, and representa-
tive of the testing data [8], [26], [28]. In practice however, data
are usually generated and stored at geographically distributed
devices (a.k.a., workers) each equipped with limited comput-
ing capability, and adhering to privacy, confidentiality, and
possibly cost constraints [14]. Furthermore, the data quality
is not guaranteed due to adversarially generated examples
and distribution drifts across workers or from the training to
testing phases [16]. Visually imperceptible perturbations to a
dermatoscopic image of a benign mole can render the first-
ever artificial intelligence (AI) diagnostic system approved by
the U.S. Food and Drug Administration in 2018, to classify it
as cancerous with 100% confidence [7]. A stranger wearing
pixelated sunglasses can fool even the most advanced facial
recognition software in a home security system to mistake
it for the homeowner [4], [23]. Hackers indeed manipulated
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readings of field devices and control centers of the Ukrainian
supervisory control and data acquisition system to cause the
first ever cyberattack-caused power outage in 2015 [2], [18],
[31]. Examples of such failures in widely used AI-enabled
safety- and security-critical systems today could put national
infrastructure and even lives at risk.

Recent research efforts have focused on devising defense
strategies against adversarial attacks. These strategies fall
under two groups: attack detection, and attack recovery. The
former identifies whether a given input is adversarially per-
turbed [9], while the latter trains a model to gain robustness
against such adversarial inputs [10], which is also the theme of
the present contribution. To robustify learning models against
adversarial data, a multitude of data pre-processing schemes
have been devised [24], to identify anomalies not adhering to
postulated or nominal data. Adversarial training on the other
hand, adds imperceptible well-crafted noise to clean input data
to gain robustness [8]; see also e.g., [19], [21], [22], and [3]
for a recent survey. In these contributions, optimization tasks
are formulated to craft adversarial perturbations. Despite their
empirical success, solving the resultant optimization problem
is challenging. Furthermore, analytical properties of these
approaches have not been well understood, which hinders
explainability of the obtained models. In addition, one needs to
judiciously tune hyper parameters of the attack model, which
tends to be cumbersome in practice.

On the other hand, data are typically generated and/or stored
at geographically distributed sites, each having subsets of data
with different distributions. While keeping data localized to
e.g., respect privacy, as well as reduce communication- and
computation-overhead, the federated learning (FL) paradigm
targets a global model, whereby multiple devices are co-
ordinated by a central parameter server [14]. Existing FL
approaches have mainly focused on the communicating ver-
sus computing tradeoff by aggregating model updates from
the learners; see e.g., [15], [20], [25], [29] and references
therein. From the few works dealing with robust FL, [17]
learns from dependent data through e.g., sparsification, while
[12] entails an ensemble of untrusted sources. These methods
are rather heuristic, and rely on aggregation to gain robust-
ness. This context, motivates well a principled approach that
accounts for the uncertainties associated with the underlying
data distributions.

Tapping on a distributionally robust optimization perspec-
tive, this paper develops robust learning procedures that en-
sure robustness to distributional uncertainties and adversarial
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attacks. Building on [26], the adversarial input perturbations
are constrained to lie in a Wasserstein ball, and the sought
robust model minimizes the worst-case expected loss over
this ball. As the resulting formulation leads to a challenging
infinite-dimensional optimization problem, we leverage strong
duality to arrive at a tractable and equivalent unconstrained
minimization problem, requiring solely the empirical data
distribution. To accommodate communication constraints or
possibly untrusted datasets distributed across multiple workers,
we propose a distributionally robust federated learning (DRFL)
algorithm. In a nutshell, the main contribution of this paper
is to develop a distributionally robust distributed learning
framework to account for untrusted and possibly anonymized
data from distributed datasets.

Notation. Bold lowercase letters denote column vectors,
while calligraphic uppercase fonts are reserved for sets; E[·]
represents expectation; ∇ denotes the gradient operator; (·)>
denotes transposition, and ‖x‖ is the 2-norm of the vector x.

II. PROBLEM FORMULATION

Consider the standard regularized statistical learning task

min
θ∈Θ

Ez∼P0

[
`(θ; z)

]
+ r(θ) (1)

where `(θ; z) denotes the loss of a model parameterized by the
unknown parameter vector θ on a datum z =(x, y) ∼ P0, with
feature x and label y, drawn from some nominal distribution
P0. Here, Θ denotes the feasible set for model parameters.
To prevent over fitting or incorporate prior information, regu-
larization term r(θ) is oftentimes added to the expected loss.
Popular regularizers include r(θ) := β‖θ‖21 or β‖θ‖22, where
β ≥ 0 is a hyper-parameter controlling the importance of the
regularization term relative to the expected loss.

The nominal distribution P0 is typically unknown. Instead
some data samples {zn}Nn=1∼ P̂

(N)
0 drawn i.i.d. from P0 are

given. Upon replacing P0 with the empirical distribution P̂ (N)
0

in (1), we arrive at the empirical loss minimization

min
θ∈Θ

Ē
z∼P̂ (N)

0

[
`(θ; z)

]
+ r(θ) (2)

where Ē
z∼P̂ (N)

0
[`(θ; z)]=N−1

∑N
n=1`(θ; zn). Indeed, a vari-

ety of machine learning tasks can be cast as (2), including e.g.,
ridge and Lasso regression, logistic regression, and reinforce-
ment learning. The resultant models obtained by solving (2)
however, have been shown vulnerable to abnormally corrupted
data in P̂ (N)

0 . Furthermore, the testing data distribution often
deviates from the available P̂ (N)

0 . For this reason, targeting a
robust model against a set of distributions corresponding to
perturbations of the underlying data distribution, leads to [26]

min
θ∈Θ

sup
P∈P

Ez∼P [`(θ; z)] + r(θ) (3)

where P is a set of distributions centered around the data
generating distribution P̂

(N)
0 . Compared with (1), the worst-

case formulation (3), yields models with reasonable perfor-
mance across a continuum of distributions characterized by P .
In practice, datasets are typically distributed across multiple

sites, where scalability, data privacy and integrity, as well as
bandwidth scarcity discourage uploading them to a central
server. This has propelled the so-called federated learning
framework, where multiple workers exchange information
with a server to learn a centralized model using data locally
generated and/or stored across workers [5], [14], [16], [20].
Workers in this learning framework communicate iteratively
with the server. Albeit appealing for its scalability, one needs
to carefully address the bandwidth bottleneck associated with
server-worker links. Furthermore, the workers’ data may have
(slightly) different underlying distributions, which further chal-
lenges the learning task. To seek a model robust to distribution
drifts across workers, we will tune robust learning in (3) to
design a robust federated algorithm algorithm.

Ensuing section targets learning a robust global model using
data that is distributed across multiple locations.

III. ROBUST LEARNING FROM DISTRIBUTED DATASETS

Consider K workers with each worker k ∈ K collecting
samples {zn(k)}Nn=1, and a globally shared model param-
eterized by θ. Parameters are to be updated at the server
by aggregating gradients computed locally per worker. For
simplicity, we consider workers having the same number
of samples N . The goal is to learn a single global model
from stored data at all workers by minimizing the following
objective function

min
θ∈Θ

Ēz∼P̂ [`(θ; z)] + r(θ) (4)

where Ēz∼P̂ [`(θ; z)] := 1
NK

∑N
n=1

∑K
k=1 `(θ, zn(k)). To

endow the learned model with robustness against distributional
uncertainties, our novel formulation will solve the following
problem in a distributed fashion

min
θ∈Θ

sup
P∈P

Ez∼P [`(θ; z)] + r(θ)

s. to. P ∈ P. (5)

There are different approaches to define ambiguity sets P ,
including momentum [6], [30], KL divergence [11], statistical
test [1], and Wasserstein distance-based ambiguity sets [1],
[26]. It has been shown that the Wasserstein ambiguity set
P results in a tractable solution, thanks to its strong duality
results [1] [26].

To formalize this, let us first defined Wasserstein distance
between two probability distribution functions (pdfs). To this
end, consider two probability measures P and Q supported on
some set Z , and let Π(P,Q) be the set of all joint measures
supported on Z2, with marginals P and Q. Let c : Z ×Z →
[0,∞) measure the cost of transporting a unit of mass from
z in P to another element z′ in Q. The celebrated optimal
transport problem is given by [27, page 111]

Wc(P,Q) := inf
π∈Π

Eπ
[
c(z, z′)

]
. (6)

Remark 1. If c(·, ·) satisfies the axioms of distance, then Wc

defines a distance on the space of probability measures. For
instance, if P and Q are defined over a Polish space equipped
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with metric d, then choosing c(z, z′) = dp(z, z′) for some p ∈
[1,∞) asserts that W 1/p

c (P,Q) is the well-known Wasserstein
distance of order p between probability measures P and Q [27,
Definition 6.1].

For a given empirical distribution P̂
(N)
0 (k) per worker

k, we resort to Wasserstein distance (6) to define the un-
certainty set as P :=

{
P
∣∣∣∑K

k=1Wc(P, P̂
(N)(k)) ≤ ρ

}
,

where Wc(P, P̂
(N)(k)) denotes the Wasserstein distance be-

tween distribution P and the local empirical data distribution
P̂ (N)(k), per worker k. Clearly, the constraint P ∈ P ,
couples the optimization in (5) across all workers. Using
this uncertainty set, we arrive at the distributionally robust
federated learning formulation as

min
θ∈Θ

sup
P∈P

Ez∼P [`(θ; z)] + r(θ)

s. to. P :=
{
P
∣∣∣ K∑
k=1

Wc(P, P̂
(N)(k)) ≤ ρ

}
(7)

To offer distributed solvers for this learning problem, we
resort to dual reformulation of the inner maximization in (7)
(see [26] for strong duality details), to arrive at the following
robust surrogate learning formulation

min
θ∈Θ

inf
γ∈Γ

K∑
k=1

Ēz(k)∼P̂ (N)(k)

[
sup
ζ∈Z
{`(θ; ζ) (8)

+γ(ρ− c(z(k), ζ))}
]

+ r(θ).

Here γ denotes the dual variable associated with the uncer-
tainty set constraint. To maximization over ζ we need to rely
on a strongly concave objective, thus we let the transportation
cost c(·) to be strongly convex, and let γ ∈ Γ := {γ|γ > γ0},
where γ0 is large enough. Since γ is the dual variable corre-
sponding to the constraint in (7), having γ ∈ Γ is tantamount
to tuning ρ, which in turn controls the level of robustness. To
this aim we assume that γ ∈ Γ, and our robust learning model
is thus obtained as the solution of

min
θ∈Θ

inf
γ∈Γ

Ē
z∼P̂ (T )

0

[
sup
ζ∈Z

ψ(θ̄, ζ; z)
]

+ r(θ̄) (9)

where ψ(θ̄, ζ; z) := `(θ; ζ)+γ(ρ−c(z, ζ)). Intuitively, input
z in (9) is pre-processed by maximizing ψ accounting for
some perturbation. To iteratively solve our objective in (9),
the ensuing section provides efficient solver under some mild
conditions.

Specifically, our distributionally robust federated learning
(DRFL) hinges on the fact that with fixed server parameters
θ̄t := [θt

>
, γt]> per iteration t, the optimization problem

becomes separable across all workers. Hence, upon receiving
θ̄t from the server, each worker k ∈ K: i) samples a
minibatch Bt(k) of data from P̂ (N)(k); ii) forms the per-
turbed loss ψk(θ̄t, ζ; z) := `(θt; ζ) + γt(ρ − c(z, ζ)) for
each z ∈ Bt(k); iii) lazily maximizes ψk(θ̄t, ζ; z) over ζ
using a single gradient ascent step to yield ζ(θ̄t; z) = z +
ηt∇ζψk(θ̄t, ζ; z)|ζ=z; and, iv) sends the stochastic gradient
|Bt(k)|−1

∑
z∈Bt(k)∇θ̄ψk(θ̄t, ζ(θ̄t; z); z)

∣∣
θ̄=θ̄t back to the

Algorithm 1: DRFL

Input : Initial guess θ̄1, a set of workers K with data
samples {zn(k)}Nn=1 per worker k ∈ K, step
size sequence {αt, ηt > 0}Tt=1

Output: θ̄T+1

1 for t = 1, . . . , T do
2 Each worker:
3 Samples a minibatch Bt(k) of samples
4 Given θ̄t and z ∈ Bt(k), forms local perturbed loss

ψk(θ̄t, ζ; z) := `(θ̄t; ζ) + γt(ρ− c(z, ζ))

Lazily maximizes ψk(θ̄t, ζ; z) over ζ to find

ζ(θ̄t; z) = z + ηt∇ζψk(θ̄t, ζ; z)|ζ=z

Computes stochastic gradient

1

|Bt(k)|
∑

z∈Bt(k)

∇θ̄ψk(θ̄t, ζ(θ̄t; z); z)
∣∣
θ̄=θ̄t

and uploads to server
5 Server:
6 Updates θ̄t according to (10)
7 Broadcasts θ̄t+1 to workers
8 end

server. Upon receiving all local gradients, the server updates
θ̄t using a proximal gradient descent step to find θ̄t+1, that is

θ̄t+1 =proxαtr

[
θ̄t − αt

K

K∑
k=1

1

|Bt(k)|

×
∑

z∈Bt(k)

∇θ̄ψk(θ̄t, ζ(θ̄t; z); z)
∣∣
θ̄=θ̄t

 (10)

which is then broadcasted to all workers to begin a new round
of local updates. Our DRFL approach is tabulated in Alg. 1.

IV. NUMERICAL TESTS

To assess the performance in the presence of distribution
drifts and data perturbations, we will rely on empirical classi-
fication of standard MNIST and Fashion- (F-)MNIST datasets.

Specifically, we considered an FL environment consisting
of a server and 10 workers, with local batch size 64, and
assigned to every worker an equal-sized subset of training data
containing i.i.d. samples from 10 different classes. All workers
participated in each communication round. To benchmark
the DRFL, we simulated the federated averaging method
[20]. The testing accuracy on the MNIST dataset per com-
munication round using clean (normal) images is depicted in
Fig. 1a. Clearly, both DRFL and federated averaging algo-
rithms exhibit reasonable performance when the data is not
corrupted. The performance is further tested against adversar-
ial samples generated according to th so-called iterative fast-
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Fig. 1: Federated learning for image classification using the MNIST dataset.
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Fig. 2: Distributionally robust federated learning for image classification using F-MNIST dataset.

gradient method (IFGSM) [13], and projected gradient descent
(PGD) attack [19].

For IFGSM and PGD attacks we used a fixed adversarial
budget εadv = 0.1 during each communication round, and
the corresponding misclassification error rates are shown in
Figs. 1b and 1c, respectively. The classification performance
using federated averaging does not improve in Fig. 1b, whereas
the DRFL performance keeps improving across communica-
tion rounds. This is a direct consequence of accounting for
the data uncertainties during the learning process. Moreover,
Fig. 1c showcases that the federated averaging becomes even
worse as the model gets progressively trained under the PGD
attack. This indeed motivates our DRFL approach when data
are from untrusted entities with possibly adversarial input
perturbations. Similarly, Fig. 2 depicts the misclassification
rate of the proposed DRFL method compared with federated
averaging, when using the F-MNIST dataset.

V. CONCLUSIONS

A robust learning framework was put forth here, where the
objective was to endow parametric models robust against dis-
tributional uncertainties and possibly adversarial data. Specif-
ically, we focused on federated learning setting to learn from
unreliable datasets across geographically distributed workers.
To this end, this paper proposed a distributionally robust
federated learning (DRFL) algorithm, which ensures data
privacy and integrity, while offering robustness with minimal

computational and communication overhead. Numerical tests
for classifying standard real images showcased the merits
of the proposed algorithm against distributional uncertainties
and adversaries. This work also opens up several interesting
directions for future research, including distributionally robust
deep reinforcement learning.
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