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Abstract—In many federated learning problems, the model
parameter is often shared across all the clients. However, when
data distributions across clients are different, such a shared
model may not have desired performance for all the clients.
Therefore, personalization is critical to federated learning, es-
pecially when data over clients are non-i.i.d. Overparametrized
models are typically trained using data on all devices and then
fine-tuned to each device for personalization. While the conven-
tional statistical learning theory suggests that overparameterized
models overfit, empirical evidence reveals that overparameterized
models for personalized federated learning still work well – a
phenomenon called “benign overfitting.” To better understand
this phenomenon, we analyze the generalization error of a meta
learning based personalized federated learning model in linear
regression settings. Our theory explains the delicate interplay
among data heterogeneity, model personalization, and benign
overfitting in personalized federated learning.

Index Terms—federated learning, personalization, meta learn-
ing, overparameterization

I. INTRODUCTION

Federated learning (FL) is an emerging distributed learning
paradigm where a machine learning model is trained across
multiple clients holding their local data without exchanging
them [1]. In many cases of FL, the model parameter is shared
and thus common across all the clients. However, as data
distributions across clients are usually heterogeneous, finding
a common model for all the clients may not be desired [2].
Therefore, it is critical to develop personalized FL models for
each client but still allow knowledge sharing among clients.

To achieve this goal, overparametrized models such as
pretrained foundation models are often used as base models
for clients to personalize [3]. However, training such base
models is difficult in FL because each client only has limited
local data and the number of training data is much smaller
than the dimension of the model parameter. To address this
issue, various approaches have been proposed to train the base
models by leveraging the data of all clients.

In this paper, we study a specific variant of personalized
federated learning models where the goal is to learn a shared
initial global model that can quickly adapt to personalized
models by taking several gradient descent steps, which is
referred to as the model agnostic meta learning (MAML) [4],
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[5]. Previous works on MAML-based personalized FL mainly
focus on analyzing the optimization and generalization error
with sufficient training data [5]. Different from the previous
works, we are particularly interested in the generalization
performance of the sought base model in practical scenarios
where the total number of data from all clients is smaller
than the dimension of the base model. In those scenarios, the
generalization error of the personalized yet overparameterized
FL models is not fully understood.

Motivated by this, we ask:

Whether the overparameterized base models lead to
overfitting in personalized FL?

In this paper, we take an initial step by answering this question
in the meta linear regression setting.

A. Related works

Personalized FL has been actively studied via machine
learning techniques such as transfer learning, meta learning,
and representation learning; see e.g., [6]. We review related
works that are grouped into the following categories.

a) Personalized federated learning: Personalized FL
has received substantial attention recently. A simple baseline
is to finetune the shared global model on local client data [7].
In [8], user-specific models are developed upon a multi-task
learning framework. And in [9], a mixture of local and global
models are used for personalized models. Another line of
personalized FL methods is based on MAML which learns a
global model that quickly adapts to local data with a few gra-
dient steps [4], [5]. The empirical success of such methods in-
spired theoretical analysis to better understand how they work.
One line of theoretical works study the generalization error or
excess risk of meta learning methods in the linear centroid
model [10], [11]. Generalization bound based on information
theory [12] and the PAC-Bayes framework [13] has also
been provided for meta learning. Recently, overparameterized
meta learning has attracted attention. Bernacchia et al. [14]
suggests that a negative learning rate in overparameterized
MAML is optimal during training. Sun et al. [15] shows that
overparameterized representation is optimal in representation
based meta learning.

b) Benign overfitting: The empirical success of overpa-
rameterized deep neural networks inspired theoretical studies
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of benign overfitting. Bartlett et al. [16] analyze overparam-
eterized linear regression model with the minimum norm
solution and find that certain data covariance matrices lead to
benign overfitting, explaining why overparameterized models
which perfectly fit the noisy training data work well during
testing. Later on, the analysis has been extended to ridge re-
gression [17] and adversarial learning with linear models [18].
While previous theoretical efforts on benign overfitting have
been largely focused on linear models, until recently, the
analysis of benign overfitting has been extended to two-
layer neural networks [19]–[21]. Existing works mainly study
benign overfitting for single level empirical risk minimization
problems applicable to conventional FL, rather than nested
problems such as MAML, which is the focus of this work.

B. Our contributions
To our best knowledge, this is the first work to provide

sufficient conditions for benign overfitting in MAML based
personalized federated learning. Our contributions are sum-
marized as follows.
C1) We derive the upper bound of the excess risk for over-

parameterized meta learning based personalized FL and
analyze the sufficient condition for benign overfitting.

C2) We compare the benign overfitting condition for the
overparameterized personalized FL models and that for
the conventional FL, and show that overfitting is more
likely to happen in MAML based personalized FL than
in conventional FL with a shared model.

C3) We show that data heterogeneity across clients will make
overfitting more likely to happen compared with learning
with a single client.

II. PRELIMINARIES: MAML BASED PERSONALIZED FL
In this section, we consider a particular personalized FL

technique which is the MAML-based personalized FL [4], [5].
We first introduce the formulation and the algorithm.

Assume the data on the m-th client are drawn from Pm,
with input feature xm ∈ Rd and target label ym ∈ R; i.e.,
(xm, ym) ∼ Pm. For each client m, we observe 2N i.i.d.
samples collected in the dataset Dm = {(xm,n, ym,n)}2Nn=1,
where Dm is divided into the train and validation datasets,
denoted as Dt

m and Dv
m, respectively. Without loss of gener-

ality, here |Dt
m| = |Dv

m| = N . Each client has its personalized
model parameter θm. Given the data Dm, we use the empirical
loss `m(θm,Dv

m) of per-client parameter θm as a measure of
the performance.

The goal of MAML based personalized FL is to learn an
initial parameter θ0, which can generate a per-client parameter
θm by taking one-step gradient descent with step size α on
the training data Dt

m, given by

θm(θ0,Dt
m) = θ0 − α∇θ0

`m(θ0,Dt
m). (1)

With M clients and D = {Dm}Mm=1, the objective is to find
θ0 that minimizes the loss averaged over all clients, given by

L(θ0,D) :=
1

M

M∑
m=1

`m(θm(θ0,Dt
m),Dv

m) (2)

Fig. 1. Diagram of personalized FL.

where θm(θ0,Dt
m) is obtained from the initial parameter θ0

by taking one-step gradient descent.
In the training stage, we obtain θ̂0 by minimizing (2). And

in the testing stage, we evaluate the test error of θ̂0 on

R(θ̂0) := Em

[
EDm

[
`m(θm(θ̂0,Dt

m),Dv
m)
]]

(3)

where the expectation is taken over the training and validation
datasets at all clients and the client distributions.

Below we briefly describe the training phase of the MAML
based personalized FL algorithm [4], [5]. Starting from the
initial base model θ0

0 , the server randomly samples a subset of
clientsMk at the k-th global iteration and sends the current θk

0

to these clients. In the local update, the local clients initially
set θk,0

0,m = θk
0 , then run J steps of local updates on θ0,m

at the selected clients. For all clients m ∈ Mk, at j-th
iteration, θk,j−1

0,m is locally updated by gradient descent over
loss function L(θ0,Dm) with step size αout, given below

θk,j
0,m = θk,j−1

0,m − αout∇L(θk,j−1
0,m ,Dm). (4)

After J local iterations, the m-th client sends θk,J
0,m to the

server and the server updates θk
0 by

θk+1
0 =

1

|Mk|
∑

m∈Mk

θk,J
0,m. (5)

The process described above is repeated until convergence.
Fig. 1 shows the training and testing procedure for person-
alized FL. In the testing phase, as illustrated by Fig. 1, the
trained base model θ̂0 will be used for new clients joining FL
to personalize with one gradient descent step.

III. MAIN RESULTS: BENIGN OVERFITTING ANALYSIS

In this section, we introduce the data model and some
necessary assumptions for the analysis. We present the main
results, highlight the key steps of the proof and provide
numerical evaluations to verify our results. Due to space
limitations, we will defer all the derivations and the proofs
of theorems in this section to the journal version.
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A. Model and Assumptions

To make a precise analysis, we will assume the following
linear data generation model in this version. Denoting the
ground truth parameter on client m as θgt

m ∈ Rd, and εm
as the noise in the data, we assume the data generation model
for client m is

ym = θgt>
m xm + εm. (6)

We make the following basic assumptions.

Assumption. 1. The total number of data is smaller than the
dimension of the model parameter; i.e. 2MN < d.
2. Noise εm is subgaussian with E[εm] = 0 and E[ε2m] = σ2.
3. Data xm = VmΛ

1
2
mzm, where zm has independent, σx-

subgaussian entries; E[zm] = 0,E[zmz>m] = Id, where Id is
a d× d identity matrix.
4. Define Qm := E[xmx>m], which has bounded eigenvalues.

Given the linear model (6), problem (2) generally has a
unique solution when d ≤ 2MN . However, by Assumption 1,
the model is overparameterized. Therefore, problem (2) may
have multiple solutions. Since recent advance in training
overparameterized models reveal that gradient descent-based
methods converge to the minimum norm solution [22], [23],
we will analyze the test error of the minimum norm solution
in this setting.

Definition 1 (Minimum norm solution). The minimum norm
solution to the empirical personalized FL problem (2) with the
linear regression loss is expressed by

min
θ0

‖θ0‖2

s.t.

M∑
m=1

‖Xv
mθ̂m(θ0)− yv

m‖2 = min
θ

M∑
m=1

‖Xv
mθ̂m(θ)− yv

m‖2

θ̂m(θ,Dt
m) = (I− αQ̂t

m)θ +
α

N
Xt>

m yt
m, ∀m (7)

where Xt
m = [xt

m,1, . . . ,x
t
m,N ]> ∈ RN×d, yt

m =

[ytm,1, . . . , y
t
m,N ]> ∈ RN . Superscript ‘t’ represents training,

which can be replaced by ‘v’ for validation and ‘a’ for all.

With the linear data model (6), the empirical loss, test error,
along with their optimal solutions can be computed analyti-
cally with closed-form which we summarize in Proposition 1.

Proposition 1. (Empirical and population level solutions)
Under data model (6), the test error of MAML based person-
alized FL with parameter θ0 can be computed by

R(θ0) = Em

[
‖θ0 − θgt

m‖2Wm

]
. (8)

The optimal solution to the test error in (8) is given by

θ∗0 := arg min
θ0

R(θ0) = Em

[
Wm

]−1Em

[
Wmθgt

m

]
(9)

where Wm is defined as

Wm = (I− αQm)Qm(I− αQm). (10)
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Fig. 2. Excess risk v.s. number of training samples (N ) with different α. We
fix M = 10, d = 200.

Denote Q̂a
m := 1

2N Xa>
m Xa

m, and the weight matrix Ŵm as

Ŵm = (I− αQ̂t
m)Q̂v

m(I− αQ̂t
m). (11)

The minimum-norm solution obtained from (7) is given by

θ̂0 =
( M∑

m=1

Ŵm

)†( M∑
m=1

Ŵmθgt
m

)
+ ∆M (12)

where † denotes the Moore–Penrose pseudo inverse, and the
error term ∆M is a polynomial function of M,N, d.

To study overfitting in the personalized FL model, we need
to measure its generalization ability. A widely used metric to
quantify the generalization ability of a model is the excess
risk. The excess risk of a solution θ̂0 is defined as

E (θ̂0) := R(θ̂0)−R(θ∗0). (13)

From (13), we can see that excess risk measures the difference
between the test error of the empirical solution from finite
samples, θ̂0 and the optimal test error. The larger the excess
risk, the further the empirical solution θ̂0 is from the optimal
population solution θ∗0 , indicating more severe overfitting.

Next, we use the definition in (13) and the solutions in
Proposition 1 to compute the excess risk analytically and
analyze its upper bound.

B. Main results

With the closed-form solutions given in Proposition 1, we
are ready to bound the excess risk of personalized FL.

Theorem 1 (Personalized FL excess risk bound). Suppose
Assumptions 1-4 hold. Let µ1(·) ≥ µ2(·) . . . denote the
eigenvalues of a matrix in the descending order. Define
WM := 1

M

∑M
m=1 Wm. For meta linear regression problem

with the minimum norm solution in (7), define the effective
ranks as

rk
(
WM

)
:=

∑
i>k µi

(
WM

)
µk+1

(
WM

) ; Rk

(
WM

)
:=

(∑
i>k µi(WM )

)2∑
i>k µ

2
i (W)

.

(14)
Define the cross-client data heterogeneity in terms of the
difference of eigenvalues of Qm, given by

V({Λm}Mm=1) :=
∣∣∣max

i,m
λi − λm,i

∣∣∣.
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For a universal constant b, if the effective dimension k∗ =
min{k ≥ 0 : rk(WM ) ≥ bMN}, then with high probability,
the excess risk satisfies

E (θ̂0) ≤ ξ + σ2c1

( k∗

2MN
+

2MN

Rk∗(WM )

)
(V({Λm}Mm=1) + 1)

(15)

where c1 is a constant, ξ depends on θgt
m ,Qm,M,N, and is

not increasing with M,N .

In the case of overparameterized models, the “benign over-
fitting” refers to the situation where the variance in the excess
risk will still vanish when M and N increase. From Theo-
rem 1, it can be further shown that the excess risk depends on
both the eigenvalues of the data covariance matrix Qm, and the
cross-client data heterogeneity, measured by V({Λm}Mm=1).
Fig. 2 plots the test error versus the number of the training
data. A “double descent” curve is formed in Fig. 2. It shows
that as N increases, E(θ̂0) first gets better, then worse and
then better; see the non-FL setting [24]. The trend in Fig. 2 is
similar to the trend observed in [25]. When d/(2MN) > 1,
the model is overparameterized, which can overfit the training
data, leading to larger excess risk as N decreases. However,
Fig. 2 shows the excess risk does not become too large as N
decreases, indicating that overfitting does not severely harm
the test error in this case.

We say the data matrix Qm satisfies the benign overfitting
condition, if for all m,

lim
MN→∞

k∗

MN
= lim

MN→∞

MN

Rk∗(WM )
= 0. (16)

This guarantees the variance term in the excess risk (15) goes
to zero with sufficient training data from all clients.

To compare benign overfitting in personalized FL with that
in conventional FL, we can set the step size α = 0 in
problem (7), which reduces to conventional FL without per-
sonalization. Compared to Theorem 1, the benign overfitting
condition in (16) is less restrictive since it does not impose
constraints on α. Intuitively, benign overfitting is more likely
to happen in personalized FL than in conventional FL.

An example to better understand what kind of data matrix
satisfies the benign overfitting condition is given below.

Example 1 (Data covariance). Suppose Qm =
diag(Id1 , βId−d1) for all m. Set M = 10, d = 200, d1 =
20, α = 0.01. Then it satisfies the benign overfitting condition
for personalized FL. We plot the test error with different
choice of β in Fig. 3.

From Fig. 3 we can observe that given a fixed number
of training data N , the test error increases with β. This
observation verifies our theory since larger β results in a
smaller R∗k(WM ), leading to a larger value of the upper bound
on the variance term in (15).

Example 1 demonstrates how the per-client data matrix
Qm affects the excess risk. We consider another example that
demonstrates how the data heterogeneity across clients affects
the excess risk.
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Fig. 3. Excess risk v.s. number of training samples (N ) for Qm =
diag(Id1 , βId−d1 ) with different β.
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Fig. 4. Excess risk v.s. number of training samples (N ) for Qm = |ωm +
1| diag(Id1 , βId−d1 ), ωm ∼ N (0, σ2

ω) with different σω .

Example 2 (Data heterogeneity). Let ωm ∼ N (0, σ2
ω).

Suppose Qm = |ωm + 1|diag(Id1 , βId−d1) for all m. Set
M = 10, d = 200, d1 = 20, α = 0.01, β = 0.3. Then it
satisfies the benign overfitting condition for personalized FL.
Fig. 4 plots the test error with different choices of σω .

Observe from Fig. 4 that the larger σ2
ω , the higher the test

error, and the more difficult for the benign overfitting condition
to be satisfied. Therefore, compared to FL with a single client,
the benign overfitting condition for FL is more restrictive as
it imposes constraints for both the expected data covariance
matrix Qm, and the data heterogeneity V({Λm}Mm=1).

C. Sketch of proof

In this section, we highlight the key steps of the proof for
Theorem 1. The first step is to decompose the excess risk of
MAML based personalized FL defined in (13) into bias and
variance, summarized in Lemma 1.

Lemma 1. With probability at least 1−δ over ε, the excess risk
of the minimum norm solution of personalized FL is bounded
above by

E (θ̂0) ≤ 2
∥∥∥(∑

m

Ŵm

)†(∑
m

Ŵm(θgt
m − θ∗0)

)∥∥∥2
W︸ ︷︷ ︸

per-client parameter distance

+ 2θ∗>0 Bθ∗0︸ ︷︷ ︸
bias

+ 2c1σ
2 log

1

δ
tr(C)︸ ︷︷ ︸

variance

(17)

where W := Em[Wm], and B,C are matrices depending on
Xm,Wm.
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The first term on the right hand side of (17) is the average
weighted distance between the optimizer of the test error and
the ground truth parameter on client m. The second term is
the bias of the minimum norm solution in overparameterized
personalized FL. The first two terms can be bounded based
on the concentration inequalities on subgaussian random vari-
ables, given in Lemmas 2 and 3 below.

Lemma 2 (Bound on per-client parameter distance). For any
δ > 0, with probability at least 1− δ,∥∥∥(∑

m

Ŵm

)†(∑
m

Ŵm(θgt
m − θ∗0)

)∥∥∥2
W
≤ Õ

( 1

M

)
where Õ(·) hides the log polynomial dependence on
N,M, d, δ.

Lemma 3 (Bound on θ∗>0 Bθ∗0). There is a constant c2 that
depends only on σx, such that for any 1 < t < MN , with
probability at least 1− e−t,

θ∗>0 Bθ∗0 ≤ c2‖θ∗0‖2‖W‖max
{√r0(W)

MN
,
r0(W)

MN
,

√
t

MN

}
.

These two terms correspond to ξ in (15) of Theorem 1,
which does not go to infinity as M,N, d increase. And the
dominating term in the excess risk is the last variance term.
The upper bound of tr(C) in the dominating variance term in
(17) is given below.

Lemma 4 (Bound on tr(C)). There are constants b, c1 such
that for 0 ≤ k ≤ 2MN/c1, rk(WM ) ≥ bMN , and l ≤ k,
with probability at least 1− 7e−2MN/c1 , it follows

tr(C) ≤ c1
( l

2MN
+

2MN

Rl(WM )

)
(V({Λm}Mm=1) + 1).

Plugging the results of Lemmas 2, 3 and 4 into (17), we
reach the results in Theorem 1.

IV. CONCLUSIONS

In this paper, we study overparameterized meta learning
based personalized federated learning. For a precise analysis,
we focus on linear regression where the total number of data
from all clients is smaller than the dimension of the model
parameter. We show that when the data heterogeneity across
clients is small, the per-client data covariance matrices with
certain properties lead to benign overfitting for MAML based
personalized federated learning with minimum norm solution.
This explains why overparameterized personalized federated
learning models can generalize well in new data and new
clients. Furthermore, our theory shows that overfitting is more
likely to happen in MAML based personalized federated learn-
ing than in conventional federated learning with a single shared
model. In addition, data heterogeneity across clients makes
overfitting more likely in personalized federated learning.
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