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Abstract—Graph scattering transform (GST) is
mathematically-designed graph convolutional model that
iteratively applies graph filter banks to achieve comprehensive
feature extraction from graph signals. While GST performs
excessive decomposition of graph signals in the graph spectral
domain, it does not explicitly achieve multiresolution in the
graph vertex domain, causing potential failure in handling
graphs with hierarchical structures. To address the limitation,
this work proposes novel multiscale graph scattering transform
(MGST) to achieve hierarchical representations along both
graph vertex and spectral domains. With recursive partitioning
a graph structure, we yield multiple subgraphs at various scales
and then perform scattering frequency decomposition on each
subgraph. MGST finally obtains a series of representations and
each of them corresponds to a specific graph vertex-spectral
subband, achieving multiresolution along both graph vertex and
spectral domains. In the experiments, we validate the superior
empirical performances of MGST and visualize each graph
vertex-spectral subband.

Index Terms—graph scattering transform, graph multiresolu-
tion, vertex-spectral decomposition

I. INTRODUCTION

Graph-structured data widely exists in real-world applica-
tions, and two frameworks have emerged to analyzing graph
data: graph signal processing [30] and graph neural net-
works [5], [28], [32]. Graph signal processing (GSP) extends
classical signal processing to irregular non-Euclidean domain
and provides a mathematical framework to analyze graph data.
Graph neural networks (GNN) adopt the data-driven manner
and provide an effective framework to learn from graph data.
Comparing these two, GSP emphasizes theoretical analysis;
while GNN uses nonlinearity to promote better empirical
performances.

To takes advantages of both GSP and GNN, graph scattering
transform (GST) is proposed to serve as a powerful feature
extractor and is also amenable to theoretical analyses. GST
is a non-trainable graph convolutional model that iteratively
applies graph filter banks followed by nonlinear activation
functions [6], where filter banks are mathematically-designed
and scatter the input signal to multiple frequency bands. The
mathematically designed filter bank endows GST with stability
to both graph topological deformation and graph signal per-
turbation [7], [8]. Furthermore, GST is competitive to well-
trained GCN methods in various empirical tasks, especially
with small training data sets [8].

Multiresolution is a common and powerful technique in both
GSP and GNN [10], [15], [31], [33]. It enables comprehensive

data analysis at multiple scales and precisely capture distinct
patterns at one or more scales [10]–[14], especially for those
graphs with hierarchical structures. For example, in citation
network data sets [9], documents in the same research field are
closely referenced and can be locally clustered. In Protein data
set, local structure of molecules may correspond to different
functional groups. In map data, structure of local vertexes set
help with understanding the information transmission between
closely adjacent cities [10]. Based on the GSP framework,
Irion [10] constructed Haar-like wavelet by iterative partition
on graph structure. Shuman et al. [15] presented a modular
framework to generalize Laplacian pyramid transform for
graph data, which could be apply for graph signal compression
coding. Based on the GNN framework, Gao proposed Graph
u-nets [33] which gathers the multiscale features via pooling
through the importance of vertices. Li et al. proposed graph
cross network [31] that achieve multiple scales feature learning
based on novel vertex infomax pooling and feature-crossing
layer. However, multiresolution techniques for GST has not
been well studied yet, which could potentially provide deeper
theoretical analysis than multiscale GNN as well as better
empirical performance than multiscale GSP.

To achieve this goal, we propose multiscale graph scattering
transform (MGST) framework. MGST essentially achieves
multiresolution as well as multiscale along two domains:
graph vertex domain via hierarchical partitioning and graph
spectral domain via graph scattering. MGST obtains a series
of representations and each of them corresponds to a specific
vertex-spectral subband in a specific resolution layer. The
spectral subband here indicates those frequency components
selected by a filter, and a vertex subband indicates those
vertices contained in a subgraph. The resulting representation
thus provides rich possibilities to capture significant features
in graph data. Our MGST framework will be introduced
in (Section II). We also discuss the performance of MGST
in the learning task of graph classification in (Section III),
results show that MGST outperforms GST all data sets and is
comparable to state-of-the-art GCN approaches.

II. MULTISCALE GRAPH SCATTERING TRANSFORM

We now introduce our multiscale graph scattering transform
(MGST), producing rich possibilities to capture hierarchical
representations along both graph vertex and spectral domains.
We first construct a series of subgraphs with multiple graph
scales and then perform scattering over each subgraph.
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A. Multiscale graph decomposition via recursive partitioning
We construct subgraphs via recursive partitioning, and the

subgraphs are expected to have the following properties. First,
the each one of those subgraphs should be clustered, dividing
the whole graph into several clusters helps us study the
properties of each local part. Second, subgraphs with different
scales should be included to bring us more sufficient struc-
tural information. Considering these assumptions, we perform
recursive partitioning by solving RatioCut [34] problem for
clusters k = 2, and a relaxed solution for RatioCut will be
presented.

Given a graph G = {V, E ,W}, we first compute the
complete eigenvalue and eigenvector pairs of laplacian ma-
trix: {(λℓ,uℓ)}ℓ=0,1,...,N−1. The number of zero eigenvalue
depends on the number of components in the graph, and
we denote the least positive eigenvalue as λmin with its
corresponding eigenvector as umin. Let the complete vertex
set serves as the initial set V0,0, we partition it into two
complementary subsets as V1,0,V1,1 based on the polarity of
element in umin:

V1,0 = V+ := {vi ∈ V : umin(i) ≥ 0} , (1a)
V1,1 = V− := {vi ∈ V : umin(i) < 0} . (1b)

In this way, we form the node sets of two parted subgraphs,
whose structures are further inherited from the internal struc-
tures among the corresponding nodes in the input graph, thus
obtaining the two disjoint subgraphs G+ := {V+, E+,W+},
G− := {V−, E−,W−}. Repeatedly partition on those gener-
ated graphs results in hierarchical subgraphs with decreasing
scale, and each subgraph is obtained from a graph in upper
layer.

This partition manner based on umin is the relaxed solution
of RatioCut [20] as well as unnormalized spectral clustering
for clusters k = 2, it approximately solve the NP hard problem
in a simple way. In fact, spectral clustering algorithms for
clusters k ≥ 3 worth considering as well, we perform two
clusters partitioning here for calculation convenience.

B. Graph scattering on each scale
We then perform scattering transform on graphs to achieve

layered frequency decomposition. Let S(G) and x ∈ RN×F

denote the shift matrix and graph signal with F channels
respectively, where S(G) is typically chosen as laplacian
matrix of graph structure. Frequency decomposition in each
layer is realized by the linear operator described in (2):

H : x 7→ (hj(S)x)j=1,...,J . (2)

each hj(S) denotes a filter in the form of polynomial of shift
operator S, and J denotes the size of filter bank. Typical
choices of filter banks {ψj : hj(S)}j=1,...,J include diffusion
wavelets [17] and tight Hann wavelets [19].

Graph scattering transform ΦG(x) is then cascaded by
wavelet decomposition operator H, pointwise nonlinear func-
tion ρ and global average pooling operator U . The represen-
tation obtained from GST with L layers is in (3)

ΦG(x) =
{
U(ρH)kx; k = 0, . . . , L− 1

}
, (3)

where |ΦG(x)| =
∑L

ℓ=0 J
ℓ. We denote z(0) = x and

the transformation coefficient in the mth layer U(ρH)mx
equals to

{
z(j1,...,jm) : Uρψjm . . . ρψj1x

}
1≤j1,...,jm≤J

. While
the filter bank roughly partitions the spectrum into several
subbands, the nonlinear function ρ(·) changes the distribution
of spectrum and enables GST to be more discriminating.

C. Multiscale graph scattering

MGST finally performs graph scattering tranform on every
subgraphs in every scale layer. Algorithm 1 describes MGST
in detail, note that signal partition is realized by sampling from
partitioned nodes.

The process of multiscale graph filtering performed by
MGST is illustrated in Fig. 1. We define ΨG,P (x) as the
multiscale graph scattering transform of graph signal x. The
first subscript of scattering coefficient vector Φi,j represents
the number of scale layer, and the scale of graph decreases
with layer. The second number represents the sequence number
in that layer, the lth layer contains 2l graphs, and the volume
of MGST is computed as |ΨG,P (x)| = (2P − 1)

∑L
ℓ=0 J

ℓ.
Each Φi,j is located on a specific subgraph Gi,j , and each
coefficient (Uρψjm . . . ρψj1x) contains energy extracted from
a specific spectral subband.

The computational complexity of (2) is O(KE) [8] where
K represents the polynomial order of the filter and E repre-
sents the number of edges in G. The computational complexity
for diagonalization of laplacian matrix before (1a)(1b) is
O(N3). Since the two calculation steps are decoupled, we
express their computational complexity respectively.

Algorithm 1 Multiscale graph scattering transform Ψ

Input: G = {V, E ,W}, graph signal x, size of filter bank
J , layers for graph scattering transform L, layers for
hierarchical graph partition P ≥ 2.

Output: ΨG,P (x)
Initialize: G0,0 := G, x0,0 := x, Φ0,0 := ΦG0,0

(x0,0)
for p = 1 to P − 1 do

for j = 0 to 2p−1 − 1 do
Graph partition: Gp−1,j → G+

p−1,j , G−
p−1,j

Gp,2j := G+
p−1,j , Gp,2j+1 := G−

p−1,j

Signal partition: xp−1,j → x+
p−1,j , x−

p−1,j

xp,2j := x+
p−1,j , xp,2j+1 := x−

p−1,j

Scattering transform: Φp,2j := ΦGp,2j
(xp,2j),

Φp,2j+1 := ΦGp,2j+1
(xp,2j+1).

end
end
return ΨG,P (x) = {Φi,j}0≤i<P, 0≤j<2i

D. Stability of MGST to graph data perturbations

In this section, we explore the stability of MGST when the
input graph data x ∈ RN is disturbed. When analysing the
stability of MGST, the frame bounds of the utilized wavelets
is considered, that is A2∥x∥2 ≤

∑J
j=1 ∥hj(S)x∥

2 ≤ B2∥x∥2,
where the frame bounds A and B describe how much the filter
bank amplify frequency components [8].
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Fig. 1. We illustrate the process of scattering transform on a specific subgraph. x0,0 is graph signal with all pass frequency band and x3,4 is extracted from
x0,0 by three times of partition, the color reflects the signal amplitude. ψ0, ψ1, ψ2 denote three filters defined by diffusion wavelets, and their spectrums
are shown upon. Iterative wavelet decomposition followed by non-linear function ρ constructs the scattering tree. This figure only shows the graph spectral
analysis on one single subgraph, while MGST perform spectral decomposition on every subgraph that provides more comprehensive feature extraction.

We concern about how much is the output of model effected
by the disturbance upon input signal, and we now show the
stability of the proposed MGST.

Theorem 1: Consider MGST operator Ψ(·) constructed on
graph G with L layers, J filters and P scale levels, suppose
that the graph filter bank forms a frame with bound B. Given
signal x ∈ RN and disturbed signal x̃ = x+ δ ∈ RN , it then
holds that

∥ΨG,P(x)−ΨG,P(x̃)∥2√
|ΨG,P(x)|

≤

√√√√∑L
ℓ=0 (B

2J)
ℓ∑L

ℓ=0 J
ℓ

∥δ∥2. (4)

The proof is similar to Theorem 1 in [8]. The numerator
on the left of the inequality represents the square difference
of the characteristics of MGST before and after disturbance,
and |ΨG,P(x)| = (2P − 1)

∑L
ℓ=0 J

ℓ in denominator is the
total number of scattering features. Notice that stability bound
in (4) is not related to the number of scale levels P, and
is linearly related to the square root of disturbance energy
∥δ∥. While MGST performs recursive partitioning, the union
of sub-vertex set in the pth (p ≥ 1) scale layer equals to
the complete vertex set: ∪2p−1

j=0 Vp,j = V0,0, therefore the
disturbance signal δ is partitioned in the same way that
∥δ∥22 = ∥δ0,0∥22 = Σ2p−1

j=0 ∥δp,j∥22.

III. EXPERIMENTAL RESULTS

This section validates the proposed MGST from both quan-
titative and qualitative ways.

A. Graph classification
The graph classification task requires to predict the category

label y of the input graph G given the graph signal x and
graph structure S(G). We use MGST as effective non-trainable
representation extractor and utilize the extracted ΨG,P (x) for
prediction task. The experiment of graph classification task
was carried out on four benchmark data sets, including three
proteins data sets: DD, Proteins, Enzymes, and one scientific
collaboration data set Collab, the data sets are described in
detail in Table I. Owing to the lack of graph signal feature x in
data set DD and Collab, we thus construct node degree vector
x̂ = W1 as fake signal. We employ random forest classifier
to predict the label y according to the transformation coeffi-
cients ΨG,P (x) obtained from MGST. The hyperparameters
of MGST and classifier are adjusted on the validation set. The
graph scattering transform employs diffusion wavelets with
L = 5, J = 5. We set the number of graph partition layers P
no more than 5 and adjusted it on different data set. In some
cases the graph contains only one node, we deal with this by
dividing the graph into a empty set and itself.
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Fig. 2. Visualization of vertex-frequency subbands in eight graph data in Proteins dataset, where MGST is realized with L = 3, J = 3, P = 4. The vertex
subbands correspond to subgraphs G0,0, {{Gp,j}0≤j<2p}0<p≤3 from left to right. Each column located on a vertex subband corresponds to the first six
scattering coefficients z(0), z(1), z(2), z(3), z(1,1), z(1,2) from up to down, the rest coefficients are omitted since they preserve little energy.

TABLE I
DATASET CHARACTERISTICS

Data set Graphs Avg. nodes Avg. edges Features
Proteins 1113 39 72 1

DD 1178 284 715 -
Collab 5000 74 2457 -

Enzymes 600 32 62 3

TABLE II
GRAPH CLASSIFICATION ACCURACY

Data setMethod Proteins DD Collab
SHORTEST-PATH [21] 76.43 78.86 59.10Kernel WL-OA [22] 75.26 79.04 80.74
PATCHYSAN [23] 75.00 76.27 72.60
GRAPHSAGE [24] 70.48 75.42 68.25
ECC [25] 72.65 74.10 67.79
SET2SET [26] 74.29 78.12 71.75
SORTPOOL [27] 75.54 79.37 73.76
DIFFPOOL-DET [28] 75.62 75.47 82.13
DIFFPOOL-NOLP [28] 77.42 79.98 75.63

GNNs

DIFFPOOL [28] 78.10 81.15 75.50
GSC [29] 74.03 76.57 76.88
GST [6] 76.65 74.20 76.48Scattering
MGST(ours) 78.85 79.13 77.49

Table II lists the classification accuracy and we compare
our MGST method with state-of-the-art approaches, including
kernel methods [21], [22], deep graph network methods [23]–
[28], scattering methods like geometric scattering classifier
(GSC) [29] and base line graph scattering transform (GST)
[6]. The bold numbers represent the best performance achieved
by non-trainable scattering methods, and the numbers with
gray background represent the best performance among all
approaches. The results show that our MGST outperforms the
previous non-trainable models on each data set. Even without
learning process in the representation extraction phase, the
performance of MGST is comparable to those deep learning
GCN methods.

We also explored the impact of different hierarchical scales
on different data sets and analyze the characteristics of graph
distribution. Fig. 3 shows the variation of classification accu-
racy with scale layer P on each data set. In this experiment,
we only select the original GST coefficient Φ0,0 and the
coefficient of the P th layer {ΦP,j}0≤j<2P for classification, so
the effects of different scale layers are considered separately.

Fig. 3. Effect of scale layers. Adding scale layers enhance the discrimination
ability, but this gain may decrease when the graph scale is too small.

The results show that adding some specific scale layers will
significantly improve the accuracy, while other layers will not,
which indicates that the structural characteristics of specific
data sets are contained in specific scale levels.

B. Graph vertex-spectral subband visualization

We visualize the different distribution of vertex-spectral
subbands in different graph data in Fig. 2, and we can figure
out on which subbands the graph data mainly focuses. The
spectral subband here indicates those frequency components
selected by one or multiple filters, and a vertex subband
indicates those vertices contained in a subgraph. The energy
decreases with the depth of scattering from up to down due
to the frequency decomposition. Those highlighted blocks
indicate the main component of graph data.

We take the second figure in the first row as an example
for analysis. The large value in the first line means that most
of the energy of the signal is distributed in the corresponding
frequency band of the first filter in z(1). The large value in
the ninth column means that the nodes in subgraph G3,1 have
higher energy. We can locate the regions with larger signal
values in this way. The result implies that the feature captured
by MGST is located in both vertex and spectral domain, and
different graph data highlights different subbands.
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IV. CONCLUSIONS

This work proposes a novel multiscale graph scattering
transform that achieve layered vertex-spectral decomposition.
The multiscale graphs is obtained via recursive partitioning
and the frequency decomposition is performed by scattering
transform. Furthermore, when dealing with perturbed input
signal, the stability of MGST is derived. Experiments demon-
strate that MGST provides better empirical performance than
other scattering approaches and is competitive to the state-of-
the-art GCN methods.
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