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ABSTRACT

Distributed learning paradigms, such as federated and decen-
tralized learning, allow for the coordination of models across
a collection of agents, and without the need to exchange raw
data. Instead, agents compute model updates locally based on
their available data, and subsequently share the update model
with a parameter server or their peers. This is followed by
an aggregation step, which traditionally takes the form of a
(weighted) average. Distributed learning schemes based on
averaging are known to be susceptible to outliers. A single
malicious agent is able to drive an averaging-based distributed
learning algorithm to an arbitrarily poor model. This has mo-
tivated the development of robust aggregation schemes, which
are based on variations of the median and trimmed mean.
While such procedures ensure robustness to outliers and mali-
cious behavior, they come at the cost of significantly reduced
sample efficiency. This means that current robust aggrega-
tion schemes require significantly higher agent participation
rates to achieve a given level of performance than their mean-
based counterparts in non-contaminated settings. In this work
we remedy this drawback by developing statistically efficient
and robust aggregation schemes for distributed learning.

Index Terms— Distributed learning, robust aggregation,
sample efficiency, malicious agents.

1. INTRODUCTION AND RELATED WORKS

We consider a general distributed learning problem, where a
collection of K agents aim to collaboratively solve a stochas-
tic optimization problem defined through:

wo ≜ argmin
w

1

K

K∑
k=1

EQ(w;xk) (1)

Here, xk denotes a random variable describing the privately
available data at agent k, andQ(w;xk) denotes the associated
loss. It will be convenient to define Jk(w) ≜ EQ(w;xk) and
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J(w) ≜
∑K
k=1 pkJk(w), so that:

J(w) =
1

K

K∑
k=1

Jk(w) =
1

K

K∑
k=1

EQ(w;xk) (2)

This formulation is general enough to cover a wide range of
learning problems, from distributed least mean-squares and
logistic regression [1] to distributed deep learning [2, 3].

Solutions to consensus optimization problems of the
form (1) can be pursued through a number of distributed
strategies, depending on resource and communication con-
straints. Broadly, algorithms for distributed learning can be
classified into (a) fusion-center based strategies, and (b) fully-
decentralized strategies. Fusion-center based strategies in-
volve communication with a central parameter server, which
performs aggregation of intermediate model estimates, and
subsequently broadcasts them back to participating agents.
Fully-decentralized approaches on the other hand rely purely
on peer-to-peer exchanges over some (potentially sparse)
graph topology.

Example 1 – Federated learning: Federated architec-
tures rely on a central processor to coordinate computations,
but avoid exchanges of raw data by allowing agents to lo-
cally compute updates of a common model in a highly asyn-
chronous manner. A representative example is the federated
averaging algorithm [4], where at each iteration i, a subset N
of N agents is chosen, and each agent is provided with the
current version of the model wi−1 stored at the central pa-
rameter server. Each agent then initializes ϕk,0 = wi−1 and
performs Lk steps of (stochastic) gradient descent by iterating
over j:

ϕk,j = ϕk,j−1 − µ∇̂Jk(ϕk,j−1) (3)

Here, µ > 0 denotes the step-size and ∇̂Jk(ϕk,j−1) corre-
sponds to a stochastic gradient approximation of Jk(w) based
on the locally available data. Upon completion, each agent
returns ϕk,Lk

to the parameter server, where the aggregate
model is updated according to:

wi =
1

N

∑
k∈N

ϕk,Lk
(4)

Example 2 – Decentralized learning: In contrast to
federated approaches, decentralized learning algorithms rely
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solely on peer-to-peer interactions between pairs of agents
connected by some (potentially sparse) graph topology, and
avoid the need for a central aggregator or coordinator. Similar
to federated structures, these algorithms perform combina-
tions of local updates steps, based on locally available data,
and aggregation steps, with the difference being that instead
of aggregating at a central processor, aggregation occurs lo-
cally over neighborhoods of agents based on peer-to-peer
exchanges. Here, the neighborhood Nk of agent k defines
the set of agents, with which agent k is willing and able
to exchange information. An example is the ATC-diffusion
algorithm, which takes the form [1]:

ϕk,i = wk,i−1 −µ∇̂Jk(wk,i−1) (5)

wk,i =
∑
ℓ∈Nk

aℓkϕℓ,i (6)

Examining relations (4) and (6), we note that both federated
and decentralized learning approaches rely on an averaging
step of the form:

wk,i =
∑
ℓ∈Nk

aℓkϕℓ,i = argmin
w

∑
ℓ∈Nk

aℓk∥ϕℓ,i −w ∥2 (7)

for some non-negative weights aℓk that add up to one. This
immediately makes clear the limited robustness of averaging-
based schemes for distributed learning. Manipulating the
value of a single ϕℓ,i, either for benign or malicious rea-
sons, has the potential to influence the aggregate model wk,i

arbitrarily. This has motivated increased interest over recent
years on robust alternatives to the aggregation scheme (7). An
example is the secure aggregation protocol of [5] based on
the geometric median (also known as spatial median), which
takes the form:

wk,i = argmin
w

∑
ℓ∈Nk

aℓk∥ϕℓ,i −w ∥ (8)

Variations based on element-wise median/trimmed-mean
have also been considered [6]. The authors of [7] consider
a more elaborate procedure termed “Krum”, which never-
theless discards a majority of (potentially) benign samples.
While these approaches yield increased robustness to per-
turbations in ϕℓ,i(m) up to a contamination rate of 50%,
employing the median in place of the mean results in reduced
sample efficiency, resulting in a drop in performance relative
to averaging-based approaches in the absence of adversaries.
While this fact is acknowledged in the literature [7], it is gen-
erally accepted as a necessary price to pay for the guarantee
of robustness in the presence of adversaries. An alternative
based on ℓp-norm penalization of deviation from consensus
is presented in [8]; a similar formulation in the context of
multi-task learning appears in [9].

The aforementioned works [5–8] focus on centralized or
federated learning in the presence of a fusion center. General-
izations to the decentralized setting of trimmed-mean, median

and Krum based approaches have been provided in [10, 11],
and of the penalty based RSA-approach in [12]. We note that
other works, such as [13], have considered the problem of
distributed robust estimation by networked agents. Here, a
collection of benign agents, all following a prescribed learn-
ing protocol, aim to learn collaboratively from contaminated
data. Robustness in this context is achieved by adjusting the
update (5), rather than the aggregation scheme (6).

2. M- AND MM-BASED AGGREGATION

Both (7) and (8) can be viewed as instances of the more gen-
eral M-estimation problem [14, 15]:

wk,i = argmin
w

∑
ℓ∈Nk

aℓkρ
agg
(
ϕℓ,i −w

)
(9)

The choice ρagg(·) = ∥ · ∥2 yields the ordinary average,
with high efficiency, but low robustness, while the choice
ρagg(·) = ∥ · ∥ yields the geometric median, with high ro-
bustness, but low efficiency. Letting ρagg(·) = ∥ · ∥1 on the
other hand yields the elementwise median. Different choices
of ρagg(·) allow for the trade-off of robustness and efficiency.
For simplicity, we will be focusing on loss functions ρagg(·),
which operate elementwise on their argument, which will
in turn translate into elementwise aggregation schemes. For
such ρagg(·), we have:

∑
ℓ∈Nk

aℓkρ
agg
(
ϕℓ,i −w

)
=
∑
ℓ∈Nk

aℓk

M∑
m=1

ρ
(
ϕℓ,i(m)−w(m)

)
(10)

Popular choices for the penalty function ρ(·) include mono-
tone choices such as the Huber loss and redescending ones
such as the Tukey’s bisquare function — for a detailed discus-
sion on robust loss functions for location estimation we refer
the reader to [14]. An alternative formulation of (9) follows
after differentiating:∑

ℓ∈Nk

aℓkψ
(
ϕℓ,i(m)−wk,i(m)

)
= 0 (11)

where ψ(·) = ρ′(·) is the derivative of the loss. If we define:

b(y) ≜

{
ψ(y)
y if y ̸= 0,

ψ′(0) if y = 0.
(12)

it follows that after algebraic manipulation that [14]:

wk,i(m) =

∑
ℓ∈Nk

aℓkb
(
ϕℓ,i(m)−wk,i(m)

)
ϕℓ,i(m)∑

ℓ∈Nk
aℓkb

(
ϕℓ,i(m)−wk,i(m)

)
(13)

If we define:

aℓk(m) ≜
aℓkb

(
ϕℓ,i(m)−wk,i(m)

)∑
ℓ∈Nk

aℓkb
(
ϕℓ,i(m)−wk,i(m)

) (14)
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this gives rise to the representation:

wk,i(m) =
∑
ℓ∈Nk

aℓk(m)ϕℓ,i(m) (15)

Relation (15) indicates that robust aggregation via M-estimation
can be interpreted as a convex combination of prior esti-
mates ϕℓ,i(m) with weights aℓk(m), which are obtained
by modulating aℓk with b

(
ϕℓ,i(m)−wk,i(m)

)
. Here,

b
(
ϕℓ,i(m)−wk,i(m)

)
measures the likelihood that the esti-

mate obtained from neighbor ℓ is an outlier. It is worth noting
that while (15) indicates that wk,i(m) is a convex combina-
tion of ϕℓ,i(m), this relationship is not prescriptive, nor does
it imply that it is linear. This is because aℓk(m) is an implicit
function of the prior estimates ϕℓ,i(m) as well as the result-
ing estimate wk,i(m). In practice, M-estimates are pursued
by fixed-point iterations, which return the weights aℓk(m) as
a byproduct – we refer the reader to [14] for details.

Classical M-estimators trade off robustness and statistical
efficiency via the choice of the loss function ρ(·). Simulta-
neous robustness and efficiency can be achieved as well by
utilizing a nested procedure where a robust, but not efficient,
estimate of location and scale is used to initialize and nor-
malize the fixed-point recursion of a subsequent M-estimator
leading to (15). The resulting procedure is known as MM-
estimation, and preserves the robustness of the initialization,
while inheriting the statistical efficiency of the subsequent M-
estimation [14]. In particular, MM-estimators can exhibit tol-
erance of close to 50% outliers, while having efficiency close
to that of the maximum likelihood estimate. We can then in-
tegrate the MM-based aggregator into our distributed learning
framework to obtain the proposed algorithm, termed REF-
Diffusion for “Robust-and -Efficient Diffusion”:

Algorithm 1: REF-Diffusion Strategy

Step 1: At each agent k, collect xk,i and update:

ϕk,i = wk,i−1 −µ∇̂Jk(wk,i−1) (16)

Step 2: Collect
{
ϕℓ,i

}
ℓ∈Nk

, and compute aℓk(m)

for m = 1, . . . ,M using a robust and efficient
MM-procedure.

Step 3: Aggregate via (15) for m = 1, . . . ,M .

3. ANALYSIS

3.1. Modeling Conditions

The set of agents N is decomposed into two sets. The collec-
tion of benign agents is denoted by N b, while the set of mali-
cious agents is denoted by Nm. Benign agents in N b follow

the learning and aggregation procedures in Algorithm 1 faith-
fully, while agents in Nm may deviate arbitrarily. For each
agent k, we similarly denote by N b

k the benign agents within
the neighborhood Nk of agent k, and by Nm

k the malicious
agents within that same neighborhood.

Assumption 1 (Contamination Rate). For each benign
agent k ∈ N b, the majority of agents in its neighborhood are
benign. Specifically: ∣∣N b

k

∣∣
|Nk|

> 1− ϵ (17)

Here, | · | denotes the cardinality of a set, and 0 ≤ ϵ < 1
2 rep-

resents an upper bound on the fraction of malicious agents.
Furthermore, the collection of benign agents N b form a con-
nected subgraph of the full network N .

Assumption (1) ensures that the majority of agents within
each neighborhood are benign, and that the remaining net-
work after removing malicious agents remains connected.
Such conditions are standard in the development of robust
decentralized algorithms [12]. Next, we introduce a condi-
tion on the MM-estimator:

Assumption 2 (Robust Aggregator). The MM-estimator
yielding the weights aℓk(m) is robust and efficient with
breakdown points greater than ϵ.

Finally, we impose standard conditions on the loss func-
tions of benign agents as well as the accuracy of the gradient
approximation ∇̂Jk(wk,i−1): [1, 16, 17]:

Assumption 3 (Lipschitz Gradients). For each k, the gra-
dient ∇Jk(·) is Lipschitz, namely, there exists δ ≥ 0 such that
for any x, y ∈ RM :

∥∇Jk(x)−∇Jk(y)∥ ≤ δ∥x− y∥ (18)

Assumption 4 (Strong Convexity). For each k, the cost
Jk(·) is ν-strongly convex, i.e., for every x, y ∈ RM :

(x− y)
T
(∇Jk(x)−∇Jk(y)) ≥ ν∥x− y∥2 (19)

Assumption 5 (Gradient Noise Process). For each k, the
gradient noise process is defined as

sk,i(wk,i−1) = ∇̂Jk(wk,i−1)−∇Jk(wk,i−1) (20)

and satisfies

E [sk,i(wk,i−1)|F i−1] = 0 (21)

E
[
∥ sk,i(wk,i−1)∥2|F i−1

]
≤ β2∥wo −wk,i−1 ∥2 + σ2

(22)

for some non-negative constants {β2, σ2}, and where F i−1

denotes the filtration generated by the random processes
{wℓ,j} for all ℓ = 1, 2, . . . ,K and j ≤ i− 1.
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3.2. Convergence Analysis

Assumptions 1 and 2 ensure that the number of malicious
agents within each neighborhood is smaller than the break-
down point of the MM-estimator driving the aggregation
procedure. This ensures that the aggregate wk,i obtained
from (15) provides a meaningful estimate of the mean of{
ϕℓ,i

}
ℓ∈N b

k

over the set of benign agents. Specifically, one
expects for an efficient estimator that:

b
(
ϕℓ,i(m)−wk,i(m)

)
≈

{
1, if ℓ ∈ N b

k ,

0, if ℓ ∈ Nm
k .

(23)

This translates to:

aℓk(m) ≈ aℓk ≜


aℓk∑

ℓ∈Nb
k
aℓk
, if ℓ ∈ N b

k ,

0, if ℓ ∈ Nm
k .

(24)

In other words, the effective weights aℓk of benign agents are
obtained by scaling the original weights aℓk, to account for
the fact that the effective weights aℓk of malicious agents are
set to zero. This ensures that effective weights continue to
add up to one. Under this approximation, we can write Algo-
rithm 1 as:

ϕk,i = wk,i−1 −µ∇̂Jk(wk,i−1) (25)

wk,i ≈
∑
ℓ∈N b

k

aℓkϕk,i−1 (26)

Comparing (25)–(26) with the classical diffusion strategy (5)–
(6), we note two differences. First, the aggregation step (26)
involves averaging only over the set of benign agents N b

k

within Nk, and second the weights aℓk are adjusted from aℓk.
The adjacency matrix [A]ℓk ≜ aℓk can be decomposed as:

A =

(
A
b

0
0 0

)
(27)

where A
b

contains the weights aℓk of benign agents ℓ ∈ N b.
Assumption 1, in light of the Perron-Frobenius theorem [18],
then ensures that A

b
is a primitive matrix with a single eigen-

value at one and corresponding eigenvector pb, which can be
normalized to satisfy:

A
b
pb = pb, pb(k) > 0 ∀ k,

∑
k∈N b

pb(k) = 1 (28)

We can then appeal to known results on the convergence of the
non-robust diffusion strategy [1, Theorem 9.1] to conclude:

Theorem 1 (Limiting Behavior). Suppose Assumptions 1–
5 hold, and the approximation (23) is accurate. Then, the
limiting point of Algorithm 1 is determined by the data xk of
benign agents N b through:

wo ≜ argmin
w

∑
k∈N b

pb(k)EQ(w;xk) (29)

We have for all k ∈ N b:

lim sup
i→∞

E∥wo −wk,i ∥2 = O(µ) (30)

for sufficiently small step-size µ.

4. NUMERICAL RESULTS

We consider a collection of K = 32 agents, connected
through a fully connected graph. Each agent observes data
following a linear model:

dk = uT
kw

o + vk (31)

where the regressors uk ∈ R10 are identically normally dis-
tributed with uk ∼ N (0, I10). The noise term vk is also nor-
mally distributed with vk ∼ N (0, σ2

v) and σ2
v = 0.01. Each

agent is equipped with the mean square error cost:

Jk(w) =
1

2
E∥dk − uT

kw∥2 (32)

and constructs the gradient approximation:

∇̂Jk(w) ≜ uk
(
dk − uT

kw
)

(33)

It can be readily verified that this formulation satisfies As-
sumption 3 through 5. Benign agents follow the prescribed
learning and aggregation schemes. The proposed scheme of
Algorithm 1 is implemented through an M-estimator with
Tukey’s biweight loss function [14], initialized and normal-
ized with robust location and scale estimates through the
median and median absolute deviation respectively. The im-
plementation is taken from the repository of [15], available
publicly on Github. Performance is compared to the baseline
averaging-based approach [1] and elementwise median ag-
gregation [6]. A variable number of malicious agents deviate
from the prescribed learning protocol by additively perturbing
their local update via:

ϕk,i = wk,i−1 −µ∇̂Jk(wk,i−1) +∆ (34)

where ∆ = δ1.
We show in in the left column of Fig. 1 the mean-square

deviation from wo for a single malicious agent, as a function
of both iteration and contamination strength δ. In the right
column of Fig. 1 we show mean-square deviation for a fixed
contamination strength δ = 1000 as a function of both itera-
tion and rate of contamination.

5. CONCLUSION

We have presented REF-Diffusion, an algorithm for robust
and efficient learning over networks. The strategy is derived
by replacing traditional averaging- or median-based aggrega-
tion procedures by an MM-estimate of location, which can be
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Fig. 1: Performance over time and contamination strength δ
for a single malicious agent (left) and performance over time
and contamination rate for a fixed strength (right).

designed to be simultaneously robust and efficient. The result
is a strategy which performs on par with averaging-based ap-
proaches in the absence of deviating agents, while preserving
robustness in the presence of perturbations. Numerical results
corroborate the claims.
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