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Abstract—In this work, we focus on denoising smooth signals
supported on simplicial complexes in a distributed manner. We
assume that the simplicial signals are dominantly smooth on
either the lower or upper Laplacian matrices, which are used to
compose the so-called Hodge Laplacian matrix. This corresponds
to denoising non-harmonic signals on simplicial complexes. We
pose the denoising problem as a convex optimization problem,
where we assign different weights to the quadratic regularizers
related to the upper and lower Hodge Laplacian matrices and
express the optimal solution as a sum of simplicial complex
operators related to the two Laplacian matrices. We then use
the recursive relation of the Chebyshev polynomial to implement
these operators in a distributed manner. We demonstrate the
efficacy of the developed framework on synthetic and real-world
datasets.

Index Terms—Chebyshev polynomials, denoising, distributed
signal processing, simplicial complex.

I. INTRODUCTION

Graph signal processing (GSP) has well-documented merits
for processing data defined on irregular domains [1], [2].
GSP methods capture complex pairwise relations between
different entities as explained by the structure of the underlying
graph and process signals supported on its nodes. However,
in many real-world applications, interactions between entities
are not always limited to pairwise relations, but they could
be of higher-order. Some example networks with higher-order
interactions are co-authorship, social, and biological networks,
to name a few. For instance, people communicate or work in
groups in a social network. In a biological network, more than
two proteins interact simultaneously. Higher-order interactions
in these networks cannot be modeled using simple graphs.

Simplicial complexes are mathematical objects that can
naturally represent higher-order interactions between more
than two entities [3]–[6]. A simplicial complex is a collection
of simplices of different orders, e.g., node is a zero-order
simplex, an edge is first-order simplex, a triangle is a second-
order simplex, and so on. Signals defined over simplices
of different order are referred to as higher-order simplicial
signals. For example, in an email communication network,
the zero-order simplices can model the network users and the
interactions between a subset of 3 users form signals on a
second-order simplex.

Traditional GSP methods have been extended to process
signals defined on higher-order networks; see [3], [4], [7]–
[9]. For processing signals on simplicial complexes, [7]–[11]
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represent a simplicial complex using the so-called Hodge
Laplacian matrix [12]. A Hodge Laplacian matrix is the
sum of upper and lower Laplacian matrices that encodes the
interactions between the adjacent upper and lower simplices,
respectively. Some examples of signal processing tasks over
simplicial complexes are filtering [7], denoising [3], [10], and
sampling [4], [9]. The denoising problem considered in [3],
[10] focuses on signals that are equally smooth on both lower
and upper Laplacian matrices. In many real-world datasets,
the signals are dominantly smooth on either the lower or
upper Laplacian matrices (see Section IV-B for illustration).
For denoising and processing such signals over higher-order
networks, it is of interest to have a distributed implementation.

In this work, we focus on distributed denoising of higher-
order signals that are dominantly smooth on either lower or
upper Hodge Laplacian matrices. In other words, we focus on
denoising non-harmonic signals. Specifically, the contributions
of this paper are as follows. We propose a weighted total vari-
ation (WTV) norm regularized denoising problem, where we
use different weights for the smoothness promoting quadratic
terms related to the lower and upper Hodge Laplacian ma-
trices. We leverage the properties of the Hodge Laplacian
matrices and Chebyshev polynomials to implement the closed-
form solution of the WTV denoising problem in a distributed
setting. The computation complexity of the proposed method
scales linearly in the number of higher-order simplices. Finally,
we demonstrate the performance of the proposed method on
synthetic and real-world datasets.

Throughout the paper, we use calligraphic letters V to
represent sets and |V| denotes its cardinality. We denote
matrices and vectors with boldface upper and lower case letters
as A and a, respectively. For a vector a, [a]n represents the
nth element of the vector. Given a sparse matrix A, nnz(A)
represents the number of non-zero entries in A. We use AT

and A−1 to represent the trace and inverse of the matrix A,
respectively.

II. PRELIMINARIES

In this section, we give a brief introduction to simplicial
complexes and signals defined on simplicial complexes. We
then introduce the Chebyshev polynomial approximation tech-
nique to efficiently implement the product of a function of a
matrix and a vector.

A. Simplicial complex
Given a finite set of vertices V , a collection of k+1 vertices

is called a k−simplex Sk, if |Sk| = k + 1. A simplicial
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complex S is a collection of simplices of different order such
that for any simplex Sk ∈ S , if σ ⊆ Sk then σ ∈ S . We
denote the number of k−simplices Sk present in S by Nk.
The dimension of the simplicial complex S is the highest order
simplex present in it. We denote the dimension of S as K.

The structure of a simplicial complex is completely captured
by the higher-order Hodge Laplacian matrices, Lk ∈ RNk×Nk ,
defined as

Lk = BT
kBk +Bk+1B

T
k+1

= Lkl + Lku, k = 1, 2, . . . ,K,
(1)

where {Bk}Kk=1 are the higher-order incidence matrices.
Specifically, Bk ∈ RNk−1×Nk captures the interactions be-
tween (k − 1)−simplices and k−simplices. The incidence
matrix takes values {−1, 1} if a (k − 1)−simplex is incident
on a k−simplex and it has zeros, elsewhere. For a k−th order
Hodge Laplacian matrix Lk, we define Lkl = BT

kBk and
Lku = Bk+1B

T
k+1 as the lower and upper Hodge Laplacian

matrices. The matrices Lk, Lkl, and Lku are symmetric
and positive semidefinite by construction. Thus, the Hodge
Laplacian matrix Lk admits the eigenvalue decomposition

Lk = UkΛkU
T
k , (2)

where we collect the eigenvalues of Lk in the diagonal
matrix Λk ∈ RNk×Nk and the corresponding eigenvectors
in the columns of Uk ∈ RNk×Nk . The eigenvalues of Lk

are non-negative and has an interpretation of higher-order
frequencies related to the simplicial complex. Further, we have
BkBk+1 = 0 [4]. Thus, the lower and upper Laplacian
matrices satisfy the relation LklLku = LkuLkl = 0.

B. Signals over a simplicial complex

Given a simplicial complex S, the signal xk ∈ RNk on a
k−simplex is a real-valued map from the k−simplex to RNk .
For instance, the vectors x0 ∈ RN0 , x1 ∈ RN1 and x2 ∈
RN2 are, respectively, signals indexed by the nodes, edges,
and triangles of a simplicial complex of dimension 2.

The amount of smoothness of xk ∈ RNk with respect to
(w.r.t.) the kth order Hodge Laplacian matrix Lk ∈ RNk×Nk

is captured by the quadratic total variation form

xT
kLkxk = xT

k (Lkl + Lku)xk

= xT
kLklxk + xT

kLkuxk.
(3)

Smaller the quadratic form, smoother the k−simplicial sig-
nal is. Further, the quadratic forms xT

kLklxk and xT
kLkuxk

measure the total variation of the signal xk w.r.t. the lower
and upper Laplacian matrices, respectively. Harmonic signals
xHar
k are the smoothest possible signals with the smallest

total variation (xHar
k )TLkx

Har
k = 0 and are spanned by the

eigenvectors corresponding to the zero eigenvalues of Lk. This
also means that xHar

k is jointly and uniformly smooth on both
the upper and lower Laplacian matrices Lkl and Lku.

In many cases, the variation of a smooth k−simplicial signal
is dominant w.r.t. either Lkl or Lku. This implies that, the
signal is more smooth on either the lower or upper Laplacian

matrices. For example, consider a smooth flow signal x1 on a
simplicial complex as shown in Fig. 1(a). This signal is more
smooth on the lower Laplacian matrix Lkl compared to the
upper Laplacian matrix Lku.

C. Chebyshev polynomial approximation

For a real symmetric matrix A ∈ RN×N with eigenvalue
decomposition A = UΛUT , the matrix function g(A) satis-
fies g(A) = Ug(Λ)UT , where g(Λ) is a function defined
on eigenvalues of A. Given a matrix A ∈ RN×N and
a vector y ∈ RN , computing the matrix vector product
g(A)y involves an eigenvalue decomposition that costs about
O(N3) flops. This computation complexity can be reduced by
approximating g(·) with a truncated and shifted Chebyshev
polynomials.

A function g defined on [λmin, λmax] can be expressed using
the shifted Chebyshev polynomials

g(λ) =
1

2
c0 +

∞∑
p=1

cpT̄p(λ), for all λ ∈ [λmin, λmax] , (4)

where
{
T̄p(λ)

}∞
p=0

are the shifted Chebyshev polynomials
with coefficients {cp}∞p=1 given by

ck :=
2

π

∫ π

0

cos(kϕ)g (β cos(ϕ) + α) dϕ.

Here, α = (λmax + λmin) /2 and β = (λmax − λmin) /2. The
shifted Chebyshev polynomials satisfy the following recur-
rence relation

T̄p(λ) :=


1, if, p = 0
λ−α
β , if, p = 1

2
β (λ− α)T̄p−1(λ)− T̄p−2(λ), if, p ≥ 2.

Given a vector y ∈ RN and symmetric matrix A ∈ RN×N ,
we have the recurrence relation

T̄p(A)y =
2

β
(A− αI) T̄p−1(A)y − T̄p−2(A)y, (5)

which means that T̄p(A)y can be computed from T̄p−1(A)y
and T̄p−2(A)y.

We can then approximate the matrix vector product
g(A)y =

∑N
i=1 g(λi)uiu

T
i y using the shifted Chebyshev

approximation as

g(A)y
(a)
≈

N∑
i=1

(
1

2
c0 +

P∑
p=1

cpT̄p(λi)

)
uiu

T
i y

=

(
1

2
c0 +

P∑
p=1

cpT̄p(A)

)
y, (6)

where (a) is the P th order approximation of g(λ) in (4). The
approximation error is smaller for larger P , which depends on
the operator g(·). For a sparse matrix A, computing g(A)y
using the P th order Chebyshev polynomial approximation
requires O(nnz(A)P ) flops, which is very small compared
to implementing g(A)y in its original form.
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III. DENOISING SIMPLICIAL COMPLEX SIGNALS

In this section, we state the problem of denoising simplicial
complex signals with varying levels of smoothness w.r.t.
the upper and lower Laplacian matrices. We then present
its closed-form solution. To implement this solution in a
distributed manner, we express the solution in terms of linear
operators related to the simplicial complex and approximate
it using Chebyshev polynomials. Finally, we show how the
recurrence relation of the Chebyshev polynomials enables the
distributed implementation.

A. Denoising with weighted total variation regularizer

Given a noisy k−simplicial signal yk = xk + vk on a
simplicial complex S, where xk ∈ RNk is the true signal and
vk ∈ RNk is the observation noise, we aim to denoise the
observed signal yk to recover xk. We assume that, the true
signal xk is dominantly smooth on either the lower or upper
Laplacian matrix. Mathematically, we solve the following
optimization problem

x̂k = arg min
xk

∥xk − yk∥22 + αlx
T
kLklxk + αux

T
kLkuxk, (7)

where x̂k ∈ RNk is the estimate of the true signal xk. The
second and third quadratic terms in the objective function
measure the smoothness of xk w.r.t. the lower and upper
Laplacian matrices Lkl and Lku. The hyperparameters αl > 0
and αu > 0 control the amount of smoothness of xk on
Lkl and Lku, respectively. The optimization problem (7)
is an unconstrained convex optimization problem. From the
first-order optimality conditions, the optimal solution can be
obtained in closed form as

x̂k = (I+ αlLkl + αuLku)
−1

yk := Hkyk, (8)

where Hk is a simplicial complex denoising filter.
Let us define A = αlLkl + αuLku with the eigenvalue

decomposition A = UΛUT . Then the simplicial filter Hk

can be expressed as a function of A as Hk = Ugk(Λ)UT ,
where gk(λ) = 1/(1+λ). From the recurrence relation of the
Chebyshev polynomials, (8) can be implemented using a P th
order Chebyshev polynomial approximation which costs about
O (P (nnz(Lkl) + nnz(Lku))) flops. To achieve a desired ap-
proximation error, P should be chosen appropriately based on
the smoothness of the simplicial filter gk(λ). Further, to imple-
ment this filter response in a distributed setting using the re-
currence relation of Chebyshev polynomials, each k−simplex
should scale its signal with αl (respectively, αu), while
communicating with the lower (respectively, upper) adjacent
neighbours. In a simplicial complex, a pair of k−simplices
may appear as both the lower and upper adjacent neighbours.
Thus a k−simplex should be able to choose the scaling factor
appropriately while communicating with its neighbors and not
just aggregate data as in a traditional distributed setting.

Since we focus on signals that are dominantly smooth on
either the upper or lower Laplacian matrices, the commu-
nication costs can be reduced further. In what follows, we
leverage properties of the Hodge Laplacian matrix to express

the optimal solution (8) in terms of lower and upper simplicial
complex multiplier operators. We then approximate them using
the truncated Chebyshev polynomials of different orders to ar-
rive at a communication-efficient distributed implementation.
Before doing so, we make the following remark.

Remark 1. When αl = αu, problem (7) boils down to the
denoising problem in [3]. Henceforth, we refer to this case as
unweighted total variation (UTV) based denoising. UTV penal-
izes both the smoothness promoting quadratic forms related to
the lower and upper Laplacian matrices with the same weight.
Thus, the UTV denoising approach is useful for denoising
harmonic k−simplicial signals, where the signals are equally
smooth on both Lkl and Lku. Furthermore, with αl = αu =

α, the simplicial filter Hk =
(
I+ α (Lkl + Lku)

−1
)

=

Uk (I+ αΛk)
−1

UT
k can be approximated using Chebyshev

polynomials and implemented in a distributed manner by
scaling the signals while aggregating.

B. Simplicial complex multiplier operator

For a square matrix A ∈ RN×N , we have (I+A)
−1

=∑∞
i=0(−1)iAi. Using this property, we rewrite the matrix

inverse in (8), which is a simplicial denoising filter Hk =
(I+ α1Lkl + α2Lku)

−1 as

Hk =

∞∑
n=0

(−1)n (αlLkl + αuLku)
n

(a)
= I+

∞∑
n=1

(−1)nαn
l L

n
kl +

∞∑
n=1

(−1)nαn
uL

n
ku

=

∞∑
n=0

(−1)nαn
l L

n
kl +

∞∑
n=0

(−1)nαn
uL

n
ku − I

(b)
= (I+ αlLkl)

−1︸ ︷︷ ︸
Hkl

+(I+ αuLku)
−1 − I︸ ︷︷ ︸

Hku

, (9)

where we use the fact that LklLku = 0 to arrive at (a)
and the identity (I+A)

−1
=
∑∞

i=0(−1)iAi in (b). Thus,
we have Hk = gl(Lkl) + gu(Lku), where gl(·) and gu(·)
are the functions defined on the eigenvalues of the matrices
Lkl and Lku, given by gl(λ) = 1/(1 + αlλ) and gu(λ) =
−αuλ/(1 + αuλ), respectively. The matrices Hkl and Hku

are the different simplicial complex filters related to the lower
and upper Laplacian matrices.

C. Distributed implementation

In this section, we focus on implementing the WTV sim-
plicial denoising filter in a distributed setting. The recurrence
relation of the Chebyshev polynomials (5) allows us to imple-
ment the filter response Hky in a distributed setting. In other
words, the aim is to compute [Hkyk]n at each k−simplex
by communicating its signal values with its lower and upper
adjacent k−simplices.

To do so, in a simplicial complex, we assume that each
k−simplex has the knowledge of its local neighbours, namely,
its lower and upper adjacent k−simplices and can transport
its signal [yk]n to them. From (9), we have [Hkyk]n =
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Fig. 1: Flow denoising on a simplicial complex. (a) A signal that
is dominantly smooth on Lkl compared to Lku. (b) Observed noisy
flow. (c) Denoised signal using UTV [10]. (d) Denoised signal using
the proposed WTV method.

[Hklyk]n + [Hkuyk]n. Since Hkl and Hku are different
simplicial complex filters, we use different approximation
orders based on their smoothness, i.e., we approximate the
filter responses Hkly and Hkuy using Pl and Pu order
Chebyshev polynomial approximation, respectively. We also
assume that, each k−simplex can compute the Chebyshev
polynomial coefficients {cp,l}Pl

p=0 and {cp,u}Pu

p=0 related
to the lower and upper simplicial filters. Thus to compute
[Hkyk]n, each k−simplex computes

{[
T̄p(Lkl)yk

]
n

}Pl

p=1
and{[

T̄p(Lku)yk

]
n

}Pu

p=1
using[

T̄p(Lt)yk

]
n
=

2

β

[
LtT̄p−1(Lt)yk

]
n
− 2α

β

[
T̄p−1(Lt)yk

]
n

−
[
T̄p−2(Lt)yk

]
n
, t ∈ {kl, ku} ,

and computes the sum as in (6). For p ≥ 1 and t ∈
{kl, ku}, computing

[
T̄p(Lt)yk

]
n

at each simplex, requires
communicating

[
T̄p−1(Lt)yk

]
n

with its local neighbours.
This corresponds to one round of communication. For Pl

and Pu communication rounds related to upper and lower
simplicial complex filters, implementing Hkyk costs about
O (Plnnz(Lkl) + Punnz(Lku)).

IV. NUMERICAL EXPERIMENTS

In this section, we demonstrate the performance of the pro-
posed weighted total variation (WTV) based denoising method
and its distributed implementation using the truncated shifted
Chebyshev polynomials on synthetic and real datasets. We
compare the performance in terms of approximation error
with state-of-the-art iterative methods. For the k−simplicial
signal xk ∈ RNk , the approximation error is defined as
eq = ∥xq

k − xk∥22, where xq
k is the solution at the qth order

Chebyshev polynomial approximation or the solution at the
qth step of the iterative algorithm.

A. Synthetic dataset

To evaluate the performance of the WTV denoising method,
we consider the simplicial complex shown in Fig. 1. The
simplicial complex has 7 nodes, 10 edges, and 2 triangles.
We generate a synthetic smooth flow signal on the simpli-
cial complex by taking random linear combination of the
eigenvectors U1 ∈ R10×10 of the Hodge Laplacian matrix
L1 ∈ R10×10. The smooth flow signal is given by x1 = U1z,
where z ∼ N (0, I). The true flow is dominantly smooth on
the lower Laplacian matrix L1l as compared to the upper
Laplacian matrix L1u as shown in Fig. 1(a). To demonstrate
the denoising performance, we add Gaussian noise of variance
0.5 to the true flow signal and it is as shown in Fig. 1(b).
Given the noisy flow signal, assuming that the true flows
are smooth on the Hodge Laplacian matrix, we estimate the
true signal xk from the observed noisy flows using WTV and
UTV [3] methods from the closed-form solution in (8). For
WTV, we choose α1 = 0.5 and α2 = 0.05, whereas for
UTV, we choose α1 = α2 = 0.1. These chosen parameters
yield the lowest error for the signal realization. The UTV
method penalizes both the smoothness promoting quadratic
cost related to the lower and upper Laplacian matrices equally.
Thus, the approximation error for UTV is more compared to the
proposed WTV method as can be see in in Figs. 1(c) and 1(d).
Now, we compare the proposed distributed implementation
of the filter Hky using the truncated Chebyshev polynomial
approximation (6) with Jacobi method [13] and Jacobi with the
Chebyshev acceleration method [14]. Instead of implementing
a denoising filter response Hkyk directly, we can also use the
Jacobi method solves a system of linear equations Qxk = yk,
where Q = H−1

k . Starting with a random initial value x0
k, the

Jacobi method iteratively updates its solution as

x
(t+1)
k = Q−1

D QOx
(t)
k +Q−1

D y, t = 0, 1, . . . , T − 1,

where the matrices QD and QO contain the diagonal and
off-diagonal entries of Q and satisfy Q = QD − QO. The
Jacobi method converges, if and only if, the spectral radius
of the matrix Q−1

D QO is less than one. Convergence of the
Jacobi method can be accelerated by adding a momentum term
to the Jacobi iterates, henceforth referred to as Jacobi with
Chebyshev acceleration [14], [15].

In Fig. 2(a), we compare the approximation error ∥xq
k −

x̂k∥22 for different distributed implementations discussed above
as a function of iteration index. Recall that, x̂k is the closed-
form solution (8) for the WTV denoising problem. It is clear
from Fig. 2(a) that the Chebyshev polynomial approximation
converges faster to the true solution compared to the iterative
counterparts.

In Fig. 2(b), we plot the resulting approximation errors
et = ∥x̂t − x̃t∥2, t ∈ {kl, ku} for lower and upper simplicial
complex filtering operations Hklyk and Hkuyk, respectively.
As the lower simplicial filter response is more smooth in this
experiment, it converges faster and requires fewer communi-
cation rounds as compared to the upper simplicial complex
filter.
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Fig. 2: Denoising on synthetic and real-world datasets. (a) WTV on the synthetic dataset. (b) Chebyshev polynomial approximation errors
for lower and upper simplicial complex filters responses to indicate that we can use different approximation orders based on smoothness. (c)
UTV and WTV on the primary school contact dataset. The dashed line indicates the errors ∥x̂k−xk∥2 achieved from the closed-form solution
using UTV and WTV methods. (d) Chebyshev polynomial approximation errors for lower and upper simplicial complex filters responses on
the primary school contact dataset.

B. Real dataset

In this section, we evaluate the denoising performance of
the WTV method on the primary school contact dataset [16].
This dataset is a collection of higher order simplices encoding
the interactions between students in a primary school. For
illustration, we limit our analysis to the 4th order simplices.
The dataset has N0 = 242, N1 = 8317, N2 = 5139,
N3 = 381, and N4 = 9 higher-order simplices. The signal on
each k−simplex is the number of interactions between k + 1
students.

For illustration, we consider denoising signals over the 4th
order simplices. We assume that the true signal is x4 ∈ R381

is smooth on the 4th order Hodge Laplacian matrix L4 ∈
R381×381. The amount of smoothness of x4 on the lower and
upper Laplacian matrices are 4.12 and 0.0204, respectively.
We add Gaussian noise of variance 5 to the true signal.

We solve the simplicial denoising problem in (7) using WTV
and UTV in a distributed manner by implementing (6). For
denoising using WTV, we choose α1 = 30, α2 = 10 and for
UTV, we choose α1 = α2 = 15. The iterative methods Jacobi
and Jacobi with Chebyshev acceleration do not converge as the
spectral norm of the matrix Q−1

D QO for this dataset is greater
than one. Hence, we do not report their performance. In Fig.
2(b), we plot the approximation error ∥xq

k−xk∥2 as a function
of the approximation order P . It is clear from Fig. 2(c) that, for
P > 40, both the WTV and UTV denoising methods converge to
their corresponding closed-form solutions. Furthermore, WTV
achieves a smaller denoising error than UTV. Figure 2(d)
shows that to achieve an approximation error of 10−8 with
Pl = Pu = 131 it costs about 174754 flops, whereas by
choosing Pl = 131 and Pu = 56, we can achieve same error
with about 157879 flops.

V. CONCLUSIONS

We developed a framework for denoising signals defined
over simplicial complexes in a distributed setting. To denoise
signals that are dominantly smooth w.r.t. either the upper or
lower Hodge Laplacian matrices, we presented a weighted
total variation regularized denoising solution and a compu-
tationally efficient solution based on the Chebyshev polyno-

mial approximation. The performance of the proposed WTV
denoising method is better than the UTV denoising method.
We demonstrated the effectiveness of the proposed method on
synthetic and real-world datasets. The computational complex-
ity of the proposed distributed solution scales linearly with the
number of higher-order simplices.
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