
Robust Tensor Tracking With Missing Data Under
Tensor-Train Format

Le Trung Thanh†,⋆, Karim Abed-Meraim†,‡, Nguyen Linh Trung⋆ and Adel Hafiane†

†University of Orléans, INSA-CVL, PRISME, EA 4229, 45067 Orléans, France
⋆ VNU University of Engineering and Technology, 100000 Hanoi, Vietnam

‡Academic Institute of France (IUF), 75005 Paris, France

Abstract—Robust tensor tracking or robust adaptive tensor
decomposition of streaming tensors is crucial when observations
are corrupted by sparse outliers and missing data. In this paper,
we introduce a novel tensor tracking algorithm for factorizing
incomplete streaming tensors with sparse outliers under tensor-
train (TT) format. The proposed algorithm consists of two main
stages: online outlier rejection and tracking of TT-cores. In the
former stage, outliers affecting the data streams are efficiently
detected by an ADMM solver. In the latter stage, we propose an
effective recursive least-squares solver to incrementally update
TT-cores at each time t. Several numerical experiments on both
simulated and real data are presented to verify the effectiveness
of the proposed algorithm.
Index Terms—Tensor-train decomposition, robust adaptive algo-
rithms, streaming data, missing data, sparse outliers.

I. INTRODUCTION

Over the last decade, data stream analysis has gained increas-
ing attention in the signal processing and machine learning
community as many modern streaming systems generate mas-
sive data streams over time [1]. There exist several inherent
issues which are still challenging for mining and analysing
data streams. For example, the data size is unbounded, while
the underlying process that generates streaming data can be
time-varying. Also, uncertainties (e.g., incomplete, noisy, and
corrupted elements) can arise during data acquisition, and thus,
they may lead to undesired results.
In parallel, tensor decomposition (TD) has become a power-
ful processing tool for analysing multidimensional data and
found many applications in various areas [2], [3]. TD allows
factorizing a tensor – a multiway array – into a set of basic
components and factors (e.g., vectors, matrices, or “simpler”
tensors). When factorizing tensors derived from data streams
(aka streaming tensors), we may refer to such a decomposition
as tensor tracking or adaptive (online) tensor decomposition.
In addition, missing data and sparse outliers become more
and more ubiquitous in streaming and online applications [4].
Therefore, it would be of great interest to develop a robust
variant of tensor tracking, which is capable of handling data
corruptions and inherent issues in streaming systems.

Corresponding author: Nguyen Linh Trung (linhtrung@vnu.edu.vn). This
work has been done under the research project QG.22.62 on “Multidimen-
sional data analysis and application to Alzheimer’s disease diagnosis” of
Vietnam Nation University, Hanoi.

1I

X
1G

2I 3I 4I

1I 2I 3I 4I

2G 3G 4G
1r 2r 3r

1r 1r

2r 3r

3r
2r

 1 2 2r I r 2 3 3r I r 3 4r I 1 1I r

Fig. 1. TT-decomposition of X ∈ RI1×I2×I3×I4 with TT-rank [r1,r2,r3].

In this study, we consider the problem of robust tensor tracking
in the presence of both missing data and outliers under the
tensor-train (TT) format. Specifically, we can represent a N-
order tensor under the TT format by a set of N tensors
of 3-order via a multilinear product [5], see Fig. 1 for an
illustration. Compared to the two standard CP and Tucker
decompositions, TT decomposition offers several appealing
features, such as: (i) we can factorize any high-order tensor
under the TT format and its computation is stable; (ii) TT
rank can be effectively determined, and (iii) it can break the
curse of dimensionality. As a result, this decomposition has
the potential to handle large-scale and high-order tensors. The
readers are referred to [6] for a good review on (batch) tensor-
train decomposition.
RelatedWorks: In streaming (adaptive) settings, tensor-train
decomposition has not got as much attention and popularity as
CP and Tucker decompositions. Specifically, there exist only
a few online tensor-train algorithms for tensor tracking in the
literature so far.
Liu et al. in [7] introduced an incremental tensor-train algo-
rithm for factorizing tensors whose one mode can increase
with time, namely iTTD. By considering data streams as
individual tensors, iTTD factorizes the incoming data into TT-
cores and then concatenates them into old estimations. Wang
et al. in [8] also proposed an incremental algorithm called
AITT for streaming tensor-train decomposition. By utilizing
a relation between the integration of unfolding matrices and
the directly reshaped matrix, AITT can update the underlying
TT-cores at a low cost. However, the optimization framework
of iTTD and AITT is not an online streaming learning,
but incremental batch learning. In parallel, we proposed two
effective online methods called TT-FOA and ATT for adaptive
tensor-train decomposition in [9], [10], respectively. Although
TT-FOA and ATT can track the low-rank components of
high-order tensors successfully with time, they have not been

832ISBN: 978-1-6654-6798-8 EUSIPCO 2022

designed for handling data corruptions. It is worth noting that
all the existing adaptive TT algorithms above are sensitive to
either time variation, missing data, or sparse outliers.
Main Contribution: In this paper, we introduce a new
tensor-train method for factorizing incomplete high-order
streaming tensors possibly corrupted by sparse outliers. The
proposed method is referred to as ROBOT which stands for
ROBust Online Tensor-Train decomposition. ROBOT involves
two well-known optimization methods: block-coordinate de-
scent (BCD) and recursive least-squares (RLS). Thanks to the
BCD framework, ROBOT decomposes the main optimization
into two stages: (i) online outlier rejection and (ii) tracking of
TT-cores in time. In the former stage, we apply an effective
ADMM solver to estimate the last (temporal) TT-core and
sparse outliers living in observations. In the latter stage, we
present an efficient RLS solver to minimize an exponen-
tial weighted least-squares objective function accounting for
missing entries and time variations of TT-cores. Technically,
ROBOT is capable of estimating the low-rank components
of the underlying tensor from imperfect streams (i.e., due to
noise, outliers, and missing data) and tracking their time vari-
ation in dynamic environments. To the best of our knowledge,
ROBOT is the first streaming TT decomposition robust to
sparse outliers, missing data, and time variation. For reference,
we summarize in Tab. I some frequently used notations in this
paper.

TABLE I
NOTATIONAL CONVENTIONS

Notations Descriptions

x,x,X,X scalar, vector, matrix, and tensor

[X]i1i2...iN (i1, i2, . . . iN)-th element of X
X(i, :),X(:, j) i-th row and j-th column of X
X−1, X⊤, and X−⊤ inverse, transpose of X, and transpose of X−1

X(n) mode-n unfolding/matricization of X
reshape{X , [a]} reshape X into a new tensor of size a1 ×·· ·×aN

X ⊞n Y concatenation of X with Y along the n-th dimension

X ×1
n Y mode-(n,1) contracted product of X and Y

⊗, ⊛ Kronecker and Hadamard product

∥.∥F and ∥.∥p Frobenius norm and ℓp norm (p = 1,2)

II. PROBLEM FORMULATION

In this paper, we study the robust adaptive tensor-train decom-
position of a N-order streaming tensor Xt in the presence of
both sparse outliers and missing data. Without loss of general-
ity, we suppose the last dimension of Xt is temporal, while the
others remain constant with time, i.e., Xt ∈RI1×I2×···×IN−1×It

N .
Specifically, at time t, Xt is obtained by concatenating the
incoming data stream Yt ∈ RI1×I2×···×IN−1×W (with W ≥ 1) to
the old observation Xt−1 along the temporal dimension It

N ,
i.e.,

Xt =Xt−1 ⊞N Yt and It
N = It−1

N +W. (1)

Fig. 2. Temporal slice Yt with missing data and outliers.

The temporal slice Yt is supposed to have the form

Yt =Pt ⊛
(
Lt +Ot +Nt

)
, (2)

see Fig. 2 for an illustration. Particularly, Pt is a binary mask
tensor, Ot is a sparse outlier tensor, Nt is a Gaussian noise
tensor, and they share the same size as Yt . The low-rank
component Lt of Yt is expressed as

Lt = G(1)
t ×1

2 G
(2)
t ×1

3 · · ·×1
N G(N)

t , (3)

where G(n)
t ∈Rrn−1×In×rn for n= 1,2, . . . ,N with r0 = rN = 1

is the n-th TT-core; [r1,r2, . . . ,rN−1] is called TT-rank; and
G(N)

t ∈ RrN−1×W contains the last W columns of G(N)
t .

In online settings, we propose to minimize the following
objective function:

argmin
{G(n)}N

n=1,O

t

∑
k=1

β
t−k

(∥∥∥Pk ⊛
(
G(1)×1

2 · · ·×1
N−1 G(N−1)×1

N G(N)
k

+Ok −Yk

)∥∥∥2

F
+ρ1

∥∥Ok
∥∥

1

)
+ρ2

N−1

∑
n=1

∥∥∥G(n)−G(n)
t−1

∥∥∥2

F
. (4)

Here, β ∈ (0,1] plays the role of a forgetting factor in adaptive
filter theory which aims to reduce the impact of distant obser-
vations as well as deal with nonstationary environments [11].
The ℓ1-norm enforces the sparsity on O (the outliers), while
the last regularization term of (4) is to control the time
variation of TT-cores between two consecutive instances. In
addition, we make two mild assumptions on the data model
to support our algorithm development in Section III: TT-cores
{G(n)}N−1

n=1 may either be static or vary slowly with time, i.e.,
G(n)

t ≃ G(n)
t−1; and the TT-rank is supposed to be known.

III. PROPOSED METHOD

In this section, we propose an adaptive method called ROBOT
(which stands for ROBust Online Tensor-Train) for factorizing
tensors derived from data streams in the presence of sparse
outliers and missing data. Particularly, we decompose the main
problem (4) into two stages:

• Stage 1: update G(N)
t and Ot given

{
G(n)

t−1

}N−1
n=1 ;

• Stage 2: estimate G(n)
t given G(N)

t , Ot , and the remaining
TT-cores, for n = 1,2, . . . ,N −1.

A. Estimation of the last TT-core G(N)
t and Outlier Ot

At each time t, we estimate G(N)
t and Ot by solving{

G(N)
t ,Ot

}
=argmin

G(N),O

[∥∥∥Pt ⊛
(
Ht−1 ×1

N G(N)+O−Yt

)∥∥∥2

F
+

+ρ1
∥∥O∥∥

1 +ρ2
∥∥G(N)

∥∥2
F

]
, (5)

833

where Ht−1 = G(1)
t−1 ×1

2 · · · ×1
N−1 G(N−1)

t−1 and the term
ρ2∥G(N)∥2

F is to mitigate ill matrix conditions. Interestingly,
we exploit the fact that (5) can be decomposed into W sub-
problems w.r.t. W columns of G(N)

t , as follows:

argmin
gi,oi

∥∥∥Pt,i

(
Ht−1gi +oi −yt,i

)∥∥∥2

2
+ρ1

∥∥oi
∥∥

1 +ρ2
∥∥gi

∥∥2
2. (6)

Here, gi,oi, and yt,i are, respectively, the i-th column of G(N),
the two unfolding matrices of O and Yt ; the mask Pt,i =

diag
{

P(N)
t (i, :)

}
; while the matrix Ht−1 ∈ RI1...IN−1×rN−1 is a

matricization of Ht−1.
Since both ℓ1-norm and ℓ2-norm are convex, (6) can be effec-
tively minimized by several methods, e.g., block coordinate
descent (BCD) [12] and alternating direction method of multi-
pliers (ADMM) [13]. In this work, we adopt the ADMM solver
introduced in our companion work on subspace tracking [14].
Due to the presence of the regularization term ρ2

∥∥gi
∥∥2

2, the
update rule at the j-th iteration of the ADMM solver in [14]
is specifically modified as follows

g j =
(

H⊤
t−1Pt,iHt−1 +ρ2IrN−1

)−1
H⊤

t−1Pt,i

(
yt,i −o j−1 + e j−1

)
,

z j = Pt,i

(
Ht−1g j + s j−1 −yt,i

)
,

e j =
λ1

1+λ1
z j +

1
1+λ1

S1+ 1
λ1

(
z j),

u j =
1

1+λ2

(
Pt,i

(
yt,i −Ht−1g j))−λ2(o j−1 − r j−1),

o j = Sρ2/λ2

(
u j + r j−1),

r j = r j−1 +u j − s j.

Here,
{

z j,e j,u j,r j
}

are auxiliary variables aiming to ac-
celerate the update initialized as zeros; the augmented La-
grangian parameters λ1 and λ2 can be chosen in the range
[1,1.8]; and Sα(.) is the soft-thresholding operator defined as
Sα(x) = max(0,x−α)−max(0,−x−α). We refer the readers
to [14] for further details. Note that since (6) is a biconvex
minimization problem, and thus, we can apply any other
existing proved algorithm to obtain its optimal solution [15].

The temporal TT-core G(N)
t is simply obtained by G(N)

t =

[G(N)
t−1 G(N)

t]. In addition, we can re-update G(N)
t in the same

way as above when others TT-cores {G(n)
t }N−1

n=1 are updated.
Furthermore, after obtaining the outlier Ot , we can accelerate
the tracking ability of ROBOT by re-updating the observation
mask Pt as follows[

P̃t
]

i1i2...iN
=

{
0, if

[
Ot

]
i1i2...iN

̸= 0,[
Pt

]
i1i2...iN

, otherwise.
(7)

It is motivated by the following observation: In the literature
of robust subspace tracking (RST), the outlier rejection step
can facilitate the tracking ability of RST estimators because
only “clean” data are involved in the tracking process [14]. Our
stage 2 for tracking the TT-cores can be viewed as an extended
version of RST for high-order streaming tensors, so the outlier
rejection mechanism of (7) can improve its performance.

B. Estimation of TT-cores
{
G(n)

t
}N−1

n=1

We estimate {G(n)}N−1
n=1 by minimizing

G(n)
t =argmin

G(n)

[t

∑
k=1

β
t−k

∥∥∥P̃k ⊛
(
A(n)

t−1 ×
1
n G(n)×1

n+1 B
(n)
k

−Yk

)∥∥∥2

F
+ρ2

∥∥∥G(n)−G(n)
t−1

∥∥∥2

F

]
, (8)

where A(n)
t−1 =G(1)

t−1×1
2 · · ·×1

n−1G
(n−1)
t−1 and B(n)

k =G(n+1)
t−1 ×1

n+2

· · ·×1
N−1G

(N−1)
t−1 ×1

N G(N)
k while the term Ok is discarded due to

outlier rejection mechanism (7), i.e., P̃t ⊛(Yt −Ot)= P̃t ⊛Yt .
Particularly, (8) can be regarded as the optimization problem
of adaptive TT decomposition from incomplete observations
{Yk}t

k=1 with new binary masks {P̃k}t
k=1. Accordingly, we

can apply the effective recursive least-squares (RLS) method
as proposed in our work [10] for minimizing (8). For the sake
of completeness, we describe here the main steps of the RLS
solver and refer the readers to [10] for further details.
For a better interpretation, we first recast (8) as

G(n)
t = argmin

G(n)

[
In

∑
m=1

(t

∑
k=1

β
t−k

∥∥∥P(n)
k,m

(
g(n)m

(
B(n)

k ⊗A(n)
t−1

)
−y(n)k,m

)∥∥∥2

2
+ρ2

∥∥∥g(n)m −g(n)t−1,m

∥∥∥2

2

)]
, (9)

where g(n)m is the m-th row of G(n) ∈ RIn×rn−1rn which is the
transpose of the mode-2 unfolding matrix of G(n), Pk,m =

diag
{

P̃(n)
k (m, :)

}
, A(n)

t−1 = reshape
{
A(n)

t−1, [rn−1, I1I2 . . . In−1]
}

,
and B(n)

k = reshape
{
B(n)

t , [rn, In+1In+2 . . . IN−1]
}

.

Let us denote W(n)
k = B(n)

k ⊗ A(n)
t−1, S(n)

k,m = ∑
t
k=1 β t−kW(n)

t

P(n)
t,m

(
W(n)

t
)⊤, and d(n)

t,m = ∑
t
k=1 β t−kW(n)

k P(n)
k,m

(
y(n)k,m

)⊤. At
time t, we then have

S(n)
t,m = βS(n)

t−1,m +W(n)
t P(n)

t,m
(
W(n)

t
)⊤ (10)

d(n)
t,m,= βd(n)

t−1,m +W(n)
t P(n)

t,m
(
y(n)t,m

)⊤
. (11)

Setting the gradient of (9) to zero results in:
In

∑
m=1

(
S(n)

t,m +ρ2Irn−1rn

)(
g(n)m

)⊤
=

In

∑
m=1

(
d(n)

t,m +ρ2
(
g(n)t−1,m

)⊤)
.

(12)

Therefore, we can express each row g(n)t,m of G(n)
t separately as(

S(n)
t,m +ρ2Irn−1rn

)(
g(n)t,m

)⊤
= d(n)

t,m +ρ2
(
g(n)t−1,m

)⊤
. (13)

Thanks to (10) and (11), we further recast (13) as

g(n)t,m = g(n)t−1,m +
(

δδδy(n)t,mP(n)
t,m

(
W(n)

t
)⊤

+βρ2δδδg(n)t−1,m

)
×

×
(

S(n)
t,m +ρ2Irn−1rn

)−⊤
, (14)

where δδδy(n)t,m = P(n)
t,m

(
y(n)t,m − g(n)t−1,mW(n)

t
)⊤ and δδδg(n)t−1,m =

g(n)t−1,m − g(n)t−2,m. Collecting all rows g(n)t,m together (for m =
1,2, . . . , In), we obtain a simpler recursive rule as

G(n)
t = G(n)

t−1 +
((

P(n)
t ⊛∆∆∆Y(n)

t
)(

W(n)
t

)⊤
+βρ2∆∆∆G(n)

t−1

)
×

×
(

S(n)
t +ρ2Irn−1rn

)−⊤
, (15)

834

where ∆∆∆Y(n)
t,m = Y(n)

t −G(n)
t−1W(n)

t and ∆∆∆G(n)
t−1 = G(n)

t−1 −G(n)
t−2,

and S(n)
t = βS(n)

t−1 + W(n)
t

(
W(n)

t
)⊤. To enable the recursive

update (15), we set ∆∆∆G(n)
0 = 000 and S(n)

0 = δ (n)Irn−1rn with
δ (n) > 0.

C. Computational Complexity and Memory Storage

For short, we suppose In = I and rn = r for all n= 1, . . . ,N−1.
In Stage 1, ROBOT requires a cost of O(W |Ωt |r2) flops
for estimating G(N)

t and Ot where |Ωt | denotes the num-
ber of observed data in Yt . In Stage 2, ROBOT needs a
cost of O

(
(N − 1)IN−1r4

)
flops for tracking N − 1 TT-cores

{G(n)
t }N−1

n=1 . Therefore, the overall complexity of ROBOT is
O
(
r2 max

{
(N − 1)IN−1r2,W |Ωt |

})
flops. With respect to

memory storage, ROBOT requires O
(
(N −1)(2Ir2 + r4)

)
for

storing
{
G(n)

t
}N−1

n=1 ,
{

∆∆∆G(n)
t

}N−1
n=1 , and

{
S(n)

t
}N−1

n=1 .

IV. SIMULATIONS

In this section, we evaluate the performance of ROBOT in
terms of the following aspects: (i) impact of noise, (ii) its
tracking ability in nonstationary environments, (iii) impact of
missing observations, (iv) impact of outliers, and (v) its use for
the problem of video background and foreground separation.

Experiment Setup: We follow the problem formulation in
Section II to simulate temporal slices {Yt}t≥1. In particular,
Yt is randomly generated under the model

Yt =Pt ⊛
(
Lt +Ot +Nt

)
, (16)

where Lt = G(1)
t ×1

2 G
(2)
t ×1

3 G
(3)
t ×1

4 g(4)t . (17)

Here, Pt ∈ RI1×I2×I3×1 is a binary mask tensor whose entries
are obtained by a Bernoulli model with probability 1−ωmiss
(i.e., ωmiss represents the missing density).1 Nt is a Gaussian
noise tensor whose entries are i.i.d. from N (0,σ2

n). Ot is a
sparse tensor containing outliers whose amplitude is uniformly
chosen in the interval [0,fac-outlier] while their indices
(locations) follow another Bernoulli model with probability
ωoutlier. Lt is the low-rank component of Yt in which g(4)t ∈
Rr3×1 is a standard normal random vector. At time t, TT-
cores are varied under the model G(n)

t = G(n)
t−1 + εV(n)

t , where
ε denotes the time-varying factor, V(n)

t shares the same size as
G(n)

t ∈ Rrn−1×In×rn and its entries are derived from N (0,1).
At t = 0, G(n)

0 is initialized by a Gaussian distribution with
zero mean and unit variance.
To evaluate the performance of ROBOT, we use the following
relative error:

RE
(
Xtr,Xes

)
=
∥∥Xtr −Xes

∥∥
F

/∥∥Xtr
∥∥

F , (18)

where Xtr (resp. Xes) refers to the true low-rank component
(resp. estimation).

1Values in the tensor slices are here supposed to be missing completely
at random. ROBOT still has the capability to deal with other forms of
missingness (e.g., missing at random (MAR) and missing not at random
(MNAR). Due to the space limitation, we omit experiments to demonstrate
the performance of ROBOT in such settings.

0 250 500 750 1000
10

-9

10
-6

10
-3

10
0

Fig. 3. Effect of the noise level σn on the performance of ROBOT.

0 250 500 750 1000

10
-4

10
-3

10
-2

10
-1

Fig. 4. Effect of the varying factor ε on the performance of ROBOT.

1) Effect of the noise level σn: We change the value of σn
and measure the estimation accuracy of ROBOT. We used
a streaming tensor of size 10 × 15 × 20 × 1000 and rank
rTT = [5,5,5]. Parameters of the data model were set as: time-
varying factor ε = 0, missing density ωmiss = 0%, and outlier
density ωoutlier = 0% (i.e. outliers free observations). We fixed
algorithmic parameters of ROBOT as follows: the forgetting
factor β = 0.5 and two penalty parameters ρ1 = ρ2 = 1. The
result is shown in Fig. 3. Clearly, the value of σn does not
affect ROBOT’s convergence rate but its relative error.
2) Effect of the time-varying factor ε : Next, we evaluate
the performance of ROBOT in dynamic and nonstationary
environments. We reused the streaming tensor above with 90%
observations (i.e., ωmiss = 10%). The noise level σn was fixed
at 10−3. We set the outlier density and intensity to 10% and 1,
respectively. The forgetting factor and two penalty parameters
were kept as above. Also, an abrupt change was made at
t = 600 to assess how fast ROBOT converges. Fig. 4 illustrates
the effect of ε on the tracking ability of ROBOT. We can see
that the performance of ROBOT increases when ε decreases
and converges towards a steady-state error.
3) Effect of the missing density ωmiss: We then investigate
the tracking ability of ROBOT in the presence of missing data.
The value of ωmiss was chosen among {10%,50%,90%}. We
kept all experimental parameters as above, except the time-
varying factor ε which was set to 10−3. We can see from
Fig. 5 that both convergence rate and estimation accuracy of
ROBOT are affected by the value of ωmiss. The lower ωmiss

is, the better performance ROBOT achieves.
4) Effect of outliers: Here, we measure the robustness of
ROBOT against sparse outliers. Most of experimental parame-

835

0 250 500 750 1000
10

-4

10
-2

10
0

Fig. 5. Effect of the missing density ωmiss on the tracking ability of
ROBOT.

ters were kept as in the previous tasks: ωmiss = 10%, β = 0.5,
σn = ε = 10−3, and ρ1 = ρ2 = 1. We investigated the case when
30% entries were corrupted by outliers. Three levels of the
outlier intensity fac-outlier were considered, including
0.1, 1, and 10 (resp. low, moderate, and strong effect). Fig. 6
indicates that ROBOT is capable of tensor tracking from
incomplete observations corrupted by sparse outliers.

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

Fig. 6. Effect of the outliers on the tracking ability of ROBOT.

5) Video background/foreground separation: In this task,2

we used three video datasets, including “Lobby”, “Highway”,
and “Hall”. The dataset “Lobby” includes 1700 frames of size
144× 176. There are 1700 frames of size 240× 320 in the
data “Highway”, while “Hall” consists of 3584 frames whose
size is 174× 144. The performance of ROBOT was evalu-
ated in comparison with two online background/foreground
separation algorithms, including PETRELS-ADMM [14] and
GRASTA [16]. The subspace rank and TT-rank were set to 10
and [10,10], respectively. The result from Fig. 7 indicates that
ROBOT is able to detect moving objects in real surveillance
video sequences with reasonable performance.

V. CONCLUSIONS

In this paper, we have considered the problem of streaming
tensor-train decomposition in the presence of both sparse out-
liers and missing data. A robust adaptive tensor-train algorithm
has been introduced, namely ROBOT. The proposed algorithm
is fully capable of tracking the underlying low-rank component
of incomplete streaming tensors corrupted by sparse outliers

2Here, the foreground plays the role of outliers and its separation from the
background is based on the proposed detection procedure.

Fig. 7. Background and foreground separation. From bottom to top row:
Highway, Hall, and Lobby. From left to right column: Original video frame,
PETRELS-ADMM, GRASTA, and ROBOT.

even in nonstationary environments. The use of ROBOT for
real data was illustrated with the problem of video background
and foreground separation.

REFERENCES

[1] T. Kolajo, O. Daramola, and A. Adebiyi, “Big data stream analysis: A
systematic literature review,” J. Big Data, vol. 6, no. 1, pp. 1–30, 2019.

[2] T. G. Kolda and B. W. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[3] N. D. Sidiropoulos, L. D. Lathauwer, X. Fu, K. Huang, E. E. Papalex-
akis, and C. Faloutsos, “Tensor decomposition for signal processing and
machine learning,” IEEE Trans. Signal Process., vol. 65, no. 13, pp.
3551–3582, 2017.

[4] T. Akidau, S. Chernyak, and R. Lax, Streaming Systems: The What,
Where, When, and How of Large-Scale Data Processing, 2018.

[5] I. V. Oseledets, “Tensor-train decomposition,” SIAM J. Sci. Comput.,
vol. 33, no. 5, pp. 2295–2317, 2011.

[6] A. Cichocki, N. Lee, I. V. Oseledets, A.-H. Phan, Q. Zhao, and D. P.
Mandic, “Tensor networks for dimensionality reduction and large-scale
optimization: Part 1 low-rank tensor decompositions,” Found. Trends
Mach. Learn., vol. 9, no. 4-5, pp. 249–429, 2016.

[7] H. Liu, L. T. Yang, Y. Guo, X. Xie, and J. Ma, “An incremental tensor-
train decomposition for cyber-physical-social big data,” IEEE Trans. Big
Data, vol. 7, no. 2, pp. 341–354, 2021.

[8] X. Wang, L. T. Yang, Y. Wang, L. Ren, and M. J. Deen, “ADTT: A
highly efficient distributed tensor-train decomposition method for IIoT
big data,” IEEE Trans Ind. Inf., vol. 17, no. 3, pp. 1573–1582, 2021.

[9] L. T. Thanh, K. Abed-Meraim, N. Linh-Trung, and R. Boyer, “Adaptive
algorithms for tracking tensor-train decomposition of streaming tensors,”
in Eur. Signal Process. Conf., 2020, pp. 995–999.

[10] L. T. Thanh, K. Abed Meraim, N. Linh Trung, and A. Hafiane, “Scalable
Adaptive Tensor-Train Decomposition with Incomplete Data,” IEEE
Trans. Circuits Syst. II Express Briefs, 2022 (under review).

[11] S. S. Haykin, Adaptive Filter Theory, 2008.
[12] Y. Xu and W. Yin, “A block coordinate descent method for regular-

ized multiconvex optimization with applications to nonnegative tensor
factorization and completion,” SIAM J. Imaging Sci., vol. 6, no. 3, pp.
1758–1789, 2013.

[13] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[14] L. T. Thanh, N. V. Dung, N. L. Trung, and K. Abed-Meraim, “Robust
subspace tracking with missing data and outliers: Novel algorithm with
convergence guarantee,” IEEE Trans. Signal Process., vol. 69, pp. 2070–
2085, 2021.

[15] J. Gorski, F. Pfeuffer, and K. Klamroth, “Biconvex sets and optimization
with biconvex functions: A survey and extensions,” Math. Methods Oper.
Res., vol. 66, no. 3, pp. 373–407, 2007.

[16] J. He, L. Balzano, and A. Szlam, “Incremental gradient on the Grass-
mannian for online foreground and background separation in subsampled
video,” in IEEE Conf. Comput. Vis. Pattern Recogn., 2012, pp. 1568–
1575.

836

