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Abstract—In this paper, we consider the problem of estimating
the states of a linear dynamical system whose inputs are jointly
sparse and outputs at a few unknown time instants are missing.
We model the missing data mechanism using a Markov chain
with two states representing the missing and non-missing data.
This mechanism with memory governed by the Markov chain
models intermittent outages due to communication channels and
occlusions corresponding to moving objects. We rely on the sparse
Bayesian learning framework to derive an estimation algorithm
that uses Kalman smoothing to handle temporal correlation
and the Viterbi algorithm to handle missing data. Further,
we demonstrate the utility of our algorithm by applying it to
the frequency division duplexed multiple input multiple output
downlink channel estimation problem.

Index Terms—Compressed sensing, missing data, sparsity,
intermittent observations, sparse Bayesian learning, Viterbi al-
gorithm, FDD MIMO channel estimation.

I. INTRODUCTION

The problem of missing data is relatively common in almost
all data acquisition systems and can significantly affect the
inferences from the data. This problem can be handled to
some extent by exploiting the underlying structure in the data
and interpolating the missing part. We study the problem of
missing data in the context of state estimation of a first-
order discrete linear dynamical system. The inputs to the
systems are jointly sparse vectors and linear noisy measure-
ments corresponding to some states are missing. Further, we
consider intermittent outages or a missing data mechanism
“with memory”. This mechanism is governed by a two-state
(missing or not missing) Markov process. Our goal is to
utilize the inter-vector correlation in the state vectors, the
joint support of the inputs, and the Markov-modulated missing
mechanism to estimate the states of the system at all time
instants.

The problem of sparse recovery with bursty missing data
arises in several applications. One important application do-
main is internet of things (IoT). For example, some use cases
are the monitoring of a temporally correlated and sparse
processes such as motion tracking [1], network traffic recon-
struction [2], localization refinement [3], urban traffic sensing
improvement [4], and structural health monitoring [5], [6].
Here, intermittent data outages may occur due to nonlinear
energy harvesting or environmental factors. Similarly, in a

satellite imaging system, unknown natural images are sparse
in the discrete cosine transformation or wavelet basis. Also,
bursty outages occur in satellite communication affected by
space weather due to perturbations of the ionosphere [7], [8].
Another example is the frequency division duplexing (FDD)
multiple-input multiple-output (MIMO) downlink channel es-
timation at the base station via feedback from the mobile
users [9]. The wireless channel in consecutive time slots are
jointly sparse in the angular domain and temporally correlated.
Further, the uplink channel can be bursty, and thus, some feed-
back signals can be missing. Motivated by these applications,
in this paper, we study the recovery algorithm for temporally
correlated sparse vectors, which handles missing data.

Sparse signal recovery when there is missing data was
introduced in [10] for a single measurement vector model. Fol-
lowing this work, several other works studied sparse recovery
problems with missing data in different applications [2]–[6].
The measurement bounds for single sparse vector recovery
with missing data have also been investigated [11], [12]. For
the multiple measurement model, the recovery of temporally
correlated sparse vectors with missing data was studied in [13].
This study made a strong assumption that the indices of the
missing measurements are known to the algorithm. However,
for many practical applications like FDD MIMO downlink
channel estimation problem, this assumption does not hold.
Furthermore, as we mentioned above, these systems can have
intermittent outages (with memory governed by a Markov
process). Therefore, in this paper, we relax this assumption
and consider the recovery of temporally correlated sparse
vectors when the missing indices are Markov-modulated and
unknown.

The specific contributions of the paper are two-fold.
• We devise a state estimation algorithm by combining

the framework of sparse Bayesian learning (SBL) with
the Viterbi algorithm to identify the unknown indices
of Markov-modulated missing measurements and the
Kalman smoothing algorithm to exploit temporal corre-
lation.

• We apply the algorithm to the FDD MIMO downlink
channel estimation problem. Using Monte Carlo simula-
tion results, we illustrate the performance of the algorithm
and compare it with competing algorithms.
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Figure 1. State transition diagram for the missing data mechanism showing
the transition probabilities given by (3).

II. SYSTEM MODEL

We consider a discrete-time linear dynamical system whose
state xk ∈ RN obeys the following model:

xk = Dxk−1 + uk. (1)

Here, k > 0 is the discrete time index, D ∈ RN×N is the
known state transition matrix, and uk ∈ RN is the input. We
assume that the inputs are jointly sparse, i.e., they have a few
nonzero elements compared to their dimension N , and their
supports (the locations of the nonzero indices) are the same
across all the time instants. We also assume that the initial
state x0 = 0 ∈ RN . Here, D is an arbitrary matrix and as a
result, the state xk is not necessarily jointly sparse.

Further, the output yk ∈ Rm of the system at time k is
given by

yk = z∗kAxk +wk, (2)

where A ∈ Rm×N is the output matrix, and wk ∈ Rm is
the output noise with wk ∼ N (0, σ2I). Also, z∗k ∈ {0, 1}
models the missing data mechanism, i.e., if z∗k = 0, the corre-
sponding state information is missing at the output, and yk is
independent of xk. The missing data indices z∗k, k = 1, 2, . . .
follow a hidden Markov model defined by the state transition
probabilities as given in Fig. 1. For any integer k > 0 and
i, j ∈ {0, 1},

P
{
z∗k = i|z∗k−1 = j

}
=

{
pj if i = j

1− pj if i 6= j.
(3)

For a given integer value of K <∞, our goal is to recover
the state matrix X using the output matrix Y when z∗ is
unknown, where we define

X ,
[
x1 x2 . . . xK

]
∈ RN×K (4)

Y ,
[
y1 y2 . . . yK

]
∈ Rm×K (5)

z∗ ,
[
z∗1 z∗2 . . . z∗K

]ᵀ ∈ {0, 1}K . (6)

The main challenge here is that the missing data indices given
by the locations of zeros in z∗ are unknown to the algorithm.
We recall that if the data is missing at time instant k (i.e.,
z∗k = 0), then the output yk has no information about the
corresponding state xk. However, it is possible to recover the
state xk by exploiting the temporal correlation modeled using
the first-order autoregressive model in (1). To this end, the
recovery algorithm needs to exploit the different underlying
signal structures: the joint sparsity of the inputs, the temporal

correlation of the states, and the temporal correlation of the
missing data indices.

The next section presents a Bayesian algorithm that ac-
counts for all these structures to identify the missing data
indices and recover the sparse inputs and system states.

III. BAYESIAN RECOVERY ALGORITHM

We use the SBL framework to exploit the sparse structure of
the inputs [14], [15]. The SBL formulation imposes a fictitious
Gaussian prior uk ∼ N (0,Diag {γ∗}), k = 1, 2, . . . ,K on
the sparse vectors, where Diag {γ∗} is the common diago-
nal covariance matrix with γ∗ ∈ RN

+ along the diagonal.
The Gaussian prior promotes sparsity and using a common
covariance matrix captures the jointly sparse structure [16].
Using this framework, we compute the states xk via type II
maximum likelihood (ML) estimation. To be specific, we first
compute the ML estimate of the parameters γ∗ and z∗ using
the output Y . Let θ̄ be the ML estimate of θ∗ =

[
γ∗ z∗

]
∈

RN
+ × {0, 1}K . Then, the state estimate at time k is given by

x̂k = E
{
xk

∣∣Y , θ̄} . (7)

We solve this ML estimation problem using the expectation-
maximization (EM) algorithm. The EM algorithm is an iter-
ative procedure for ML estimation of parameters of a prob-
abilistic model that depends on unobserved or hidden data.
In our case, the parameter is θ∗, and the hidden variable
is the state matrix X that is unknown while estimating θ∗.
The EM algorithm alternates between an expectation step (E-
step) and a maximization step (M-step). In every iteration,
the E-step computes the marginal log-likelihood Q(·) of the
observed data Y using the estimates of parameters obtained
in the previous iteration. The M-step computes the estimates
of θ∗ that maximizes Q(·). Let θ(r) ∈ RN

+ × {0, 1}K be the
parameter estimates in the rth iteration. Then, the E and M-
steps in the (r + 1)th iteration is given by

E-step: Q
(
θ;θ(r)

)
= EX|Y ,θ(r) {log p(Y ,X,θ)} (8)

M-step: θ(r+1) ∈ arg max
θ∈RN

+×{0,1}K
Q
(
θ;θ(r)

)
, (9)

where θ =
[
γ ∈ RN

+ z ∈ {0, 1}K
]
. Simplifying Q (·) using

(1) and (2),

Q
(
θ;θ(r)

)
= EX|Y ,θ(r) {log [p (Y |X, z) p (z) p (X,γ)}] .

(10)
From the above relation, we see that the optimization problem
in the M-step is separable in the variables γ and z. Thus, we
have

γ(r+1) ∈ arg max
γ∈RN

+

EX|Y ,θ(r) {log p (X,γ)} (11)

z(r+1) ∈ arg max
z∈{0,1}K

EX|Y ,θ(r){log p (Y |X, z)}+ log p (z) .

(12)

We describe the solution to the above two optimization prob-
lems in the following subsections.
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A. Estimation of γ(r+1)

To estimate γ(r+1), we need to compute the quantity
EX|Y ,θ(r) {log p (X,γ)} in (11). We note that

log p (X,γ) =

K∑
k=1

log p (xk|xk−1,γ) . (13)

We derive the distribution p (xk|xk−1,γ) using the Gaussian
prior assumption of the SBL framework and the first-order
autoregressive model in (1). Thus, the distribution of xk

conditioned on xk−1 is given as follows:

xk|xk−1 ∼ N (Dxk−1,Diag {γ}). (14)

As a result, we simplify the optimization problem in (11) as
follows:

γ(r+1) ∈ arg max
γ∈RN

+

K∑
k=1

EX|Y ,θ(r) {log p (xk|xk−1,γ)}

= arg min
γ∈RN

+

K log |Diag {γ}|+
K∑

k=1

Tr
{
Diag {γ}−1C(r)

k

}
,

(15)

where Tr {·} denotes the trace and we define the matrixC(r)
k ∈

RN×N in (17) as

C
(r)
k = EX|Y ,θ(r) {(xk −Dxk−1) (xk −Dxk−1)

ᵀ} (16)

= P
(r)
k + x̂

(r)
k

(
x̂
(r)
k

)T
− 2D

[
P

(r)
k,k−1 + x̂

(r)
k

(
x̂
(r)
k−1

)T ]
+D

[
P

(r)
k−1 + x̂

(r)
k−1

(
x̂
(r)
k−1

)ᵀ]
Dᵀ.

(17)

Here, x̂(r)
k−1 ∈ RN , P (r)

k ∈ RN×N , and P (r)
k,k−1 ∈ RN×N

denote the state statistics computed using the current estimate
of the hyperparameter θ(r):

x̂
(r)
k = E

{
xk

∣∣∣Y ,θ(r)} (18)

P
(r)
k = E

{(
xk − x̂(r)

k

)(
xk − x̂(r)

k

)ᵀ∣∣∣Y ,θ(r)} (19)

P
(r)
k,k−1 = E

{(
xk − x̂(r)

k

)(
xk−1 − x̂(r)

k−1

)ᵀ∣∣∣Y ,θ(r)} .
(20)

The optimization problem (15) is separable in the entries of
γ, and its closed form solution takes the following form:

γ
(r+1)
k =

1

K

K∑
k=1

Diag
{
C

(r)
k

}
. (21)

Further, relying on the Gaussian assumption, we compute
the quantities x̂k−1, P (r)

k , and P (r)
k,k−1 using fixed interval

Kalman smoothing [17] and its pseudo-code is given in
Algorithm 1.

Algorithm 1 Fixed interval Kalman smoothing algorithm

Input: γ(r), z(r),Y ,D,A, σ2

1: initialize: x̂0|0 = 0,P 0|0 = 0,P
(r)
1,0 = 0

2: for k = 1, 2, . . . ,K do
#Prediction:

3: x̂k|k−1 = Dx̂k−1|k−1
4: P k|k−1 = DP k−1|k−1D + Diag

{
γ(r)

}
#Filtering:

5: J = z
(r)
k P k|k−1A

ᵀ (AP k|k−1A
ᵀ + σ2I

)−1
6: x̂k|k = (I − JA)x̂k|k−1 + Jyk
7: P k|k = (I − JA)P k|k−1
8: end for
9: P

(r)
K,K−1 = (I − JA)DPK−1|K−1

10: for k = K,K − 1, . . . , 2 do
#Smoothing:

11: G = P k−1|k−1DP
−1
k|k−1

12: x̂
(r)
k−1 = x̂k−1|k−1 +G(x̂k − x̂k|k−1)

13: P
(r)
k−1 = P k−1|k−1 +G(P k − P k|k−1)Gᵀ

#Computing cross-covariance:
14: if k 6= K then
15: P

(r)
k,k−1 = P k|kG

ᵀ +G
(
P k+1,k −DP k|k

)
Gᵀ

16: end if
17: end for
Output:

{
x̂
(r)
k ,P

(r)
k ,P

(r)
k,k−1

}K

k=1

B. Estimation of z(r+1)

We next simplify the optimization problem in (12), and we
begin with the distribution p (Y |X, z). From (2), we note that

log p (Y |X, z) =

K∑
k=1

log p (yk|xk, zk) . (22)

Also, the conditional distribution of yk given X and zk is
yk|X, z ∼ N (zkDxk, σ

2I). Thus, (12) is equivalent to

z(r+1) ∈ arg max
z∈{0,1}K

log p (z) +

K∑
k=1

zkλ
(r)
k (23)

= arg max
z∈{0,1}K

p (z)

K∏
k=1

exp
(
zkλ

(r)
k

)
. (24)

Here, we define λ(r)k ∈ R as

λ
(r)
k = yᵀ

kDx̂
(r)
k −

1

2
Tr
{
D
[
P

(r)
k−1 + x̂

(r)
k−1

(
x̂
(r)
k−1

)ᵀ]
Dᵀ
}
,

(25)
where x̂(r)

k−1 and P (r)
k−1 are defined in (18) and (19), respec-

tively, and they are obtained using Algorithm 1.
The optimization problem in (24) is equivalent to finding

the ML estimate of the state sequence of the HMM in
Fig. 1 where the probability of observed data p(yk|X, zk) ∝
exp

(
zkλ

(r)
k

)
. An efficient method to solve this problem is

using the dynamic programming algorithm called the Viterbi
algorithm [18]. The algorithm computes two quantities v0,k
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Algorithm 2 Viterbi Algorithm
Input: p0, p1, λk, k = 1, 2, . . . ,K

1: initialize: v(0)1 = p0,v
(1)
1 = p1 exp

(
λ(r)

)
2: for k = 2, 3, . . . ,K do

#Viterbi path probabilities
3: v0,k = max

j=0,1
vj,k−1p

1−j
0 (1− p0)j

4: v1,k = exp
(
λ
(r)
k

)
max
j=0,1

vj,k−1p
j
1(1− p1)1−j

#Back pointers
5: b0,k ∈ arg max

j=0,1
vj,k−1p

1−j
0 (1− p0)j

6: b1,k ∈ arg max
j=0,1

vj,k−1p
j
1(1− p1)1−j

7: end for
#Backtracing

8: z
(r+1)
K = arg max

j=0,1
vj,K

9: for k = K − 1,K − 2, . . . , 1 do
10: z

(r+1)
k = b

z
(r+1)
k+1 ,k+1

11: end for
Output: z(r)

and v1,k by recursively taking the most probable path that can
lead zk to 0 and 1, respectively. For i = 0, 1, we obtain

vi,k = max
{jl∈{0,1}}k−1

l=1

p
(
{yl, zl = jl}k−1l=1 ,yk, zk = i

∣∣∣X)
(26)

= max
j∈{0,1}

vj,k−1p (yk|zk = i,X)p(zk = i|zk−1 = j)

(27)

= exp
(
iλ

(r)
k

)
max

j∈{0,1}
vj,k−1p(zk = i|zk−1 = j). (28)

Here, the transition probability p (zk = i|zk−1 = j) is defined
by the HMM in Fig. 1. The best sequence z(r) is obtained by
keeping track of the path of hidden states that lead to each state
(back pointers), and then at the end, backtracing the best path
from k = K to 1. The pseudocode of the Viterbi algorithm is
given in Algorithm 2.

C. Overall Algorithm and Complexity

Combining Kalman smoothing and the Viterbi algorithm
to solve the optimization problem in the M-step, we obtain
the overall Bayesian algorithm as follows. In every iteration,
we first use Kalman filtering and smoothing as given in
Algorithm 1 to compute the statistical measures of the states
xk. These statistical measures are used to update the estimates
of γ and z using (21) and Algorithm 2, respectively. The
pseudocode of the overall algorithm is given in Algorithm 3.

We next look at the computational complexity of an iteration
of the algorithm (the loop repeat in Step 3 of Algorithm 3).
The computational complexities of Kalman smoothing in
Step 4 and the Viterbi algorithm in Step 8 of Algorithm 3
are O(K(N2m + m3)) and O(K), respectively. The other
steps (computation of (17), (25) and (21)) have complexity
O(KN2). So, the overall complexity of the algorithm is

Algorithm 3 Bayesian algorithm for recovering sparse vectors
with missing data
Input: Y ,D,A, σ2I, p0, p1

1: Initialize: γ(1) = 1, z(1) = 1, r = 1
2: parameters: ε > 0 (stopping time)
3: repeat

#E-step:

4: Compute
{
x̂
(r)
k ,P

(r)
k ,P

(r)
k,k−1

}K

k=1
using Algorithm 1

with input as
(
γ(r), z(r),Y ,D,A, σ2

)
5: Compute C(r)

k using (17) for k = 1, 2, . . . ,K

6: Compute λ(r)k using (25) for k = 1, 2, . . . ,K
#M-step:

7: Update γ(r+1)
k using (21)

8: Update z(r+1) using Algorithm 2 with input as
(p0, p1, λk, k = 1, 2, . . . ,K)

9: until
∥∥∥γ(r+1)

k − γ(r)
k

∥∥∥+
∥∥z(r+1) − z(r)

∥∥ < ε

Output: x̂(r)
k

O(KN2m) when m < N . Further, the memory requirement
of the algorithm is O(KN2) since we store K covariance
matrices of size N ×N in each iteration.

IV. SIMULATION RESULTS

This section illustrates the utility of our algorithm using
the task of FDD MIMO downlink channel estimation via
feedback. Our simulation setting is similar to that in [9]. We
consider a massive MIMO base station with a uniform linear
array of N = 128 antennas and spacing of half-wavelength.
The base station serves users with a single antenna and
employs orthogonal frequency division multiplexing (OFDM)
of size 2048. Also, the carrier frequency is fc = 2 GHz.

The wireless channel xk between the base station and
user exhibits a small angle spread of 10◦. Therefore, the
channel is sparse in the virtual angular domain with sparsity
level d10◦/ (180◦/N)e = 8. Moreover, the support of the
sparse channels remains unchanged over multiple time blocks.
Further, the nonzero entries of the channel vary slowly over
time, according to the Jakes model. Therefore, the channel
vector xk obeys (1) where D = ρI and ρ is the Doppler
frequency shift dependent correlation coefficient. We assume
that the maximum mobile velocity of the supported users is
v = 27 km/hr, and thus, the maximum Doppler frequency shift
is vfc/c = 50 Hz where c is the speed of light.

In each time slot, the base station transmits a non-orthogonal
and randomly placed pilot s of size m = 30 to the user. The
user directly feeds back the received pilot signal to the base
station via a bursty channel. Thus, the feedback signal received
at the base station is given by (2) where A = Diag {s}F
where F is the m×N submatrix of discrete Fourier transform
matrix with m rows corresponding to the pilot placement. The
number of OFDM symbols K = 150. The busty feedback
channel is modeled using a Markov chain as shown in Fig. 1
with z∗1 = 1, p0 = 0.3 and p1 = 0.75 and 0.5.
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Figure 2. Comparison of RMSE and SRR of our algorithm with the competing schemes when m and p1 are varied and N = 128,K = 150 and p0 = 0.3.

To the best of our knowledge, ours is the first sparse vector
recovery algorithm with data missing at unknown indices.
So, we benchmark its performance using three algorithms
which assume the knowledge of the missing indices: Kalman
filtered compressive sensing (KF-CS) with intermittent ob-
servations [13], an oracle version of our algorithm with
known missing indices (labeled as Oracle), and the oracle
version with no missing data (labeled as No missing). For
comparison, we use two metrics: relative mean square error
RMSE =

∑K
k=1 ‖x̂k−xk‖2∑K

k=1 ‖xk‖2
and support recovery rate SRR

= 1− 1
KN

∑K
k=1 |Supp{x̂k − xk}|, where x̂k and xk denote

the estimate and true value of the sparse vectors. Here, SRR
indicates the quality of support recovery.

The results are shown in Fig. 2 which indicate that our algo-
rithm performs better than KF-CS that assumes the knowledge
of the missing indices. This behavior is due to two reasons:
one, the superior sparse recovery performance of the SBL
framework compared to the basis pursuit denoising algorithm
used in the KF-CS algorithm for sparse recovery; and two,
the optimality of the Kalman smoothing scheme used in our
algorithm compared to the Kalman filtering scheme used in
KF-CS. We also notice that our scheme’s performance is sim-
ilar to that of the oracle version, which implies that the miss-
ing indices are correctly identified. Further, the performance
degradation due to missing data is not significant because of
high temporal correlation (modeled using ρ). However, the
performance deteriorates as p1 decreases, as expected.

V. CONCLUSION

We estimated the state of a first-order linear system whose
inputs are jointly sparse. The output was missing at several
unknown locations, wherein the missing mechanism was gov-
erned using a Markov-modulated Bernoulli random variable.
The estimation algorithm used the SBL framework to model
joint sparsity, the Kalman smoothing algorithm to handle
temporal correlation, and the Viterbi algorithm to estimate the
missing data indices. Our results demonstrated the algorithm’s
performance compared to the state-of-the-art methods when
applied to the wireless channel estimation problem. The algo-
rithm’s theoretical analysis and extension to a delay-tolerant
setting are promising directions for future work.

REFERENCES

[1] H. Song, T. Liu, X. Luo, and G. Wang, “Feedback based sparse recovery
for motion tracking in RF sensor networks,” in Proc. IEEE Int. Conf.
Netw. Archit. Storage, Jul. 2011, pp. 203–207.

[2] M. Roughan, Y. Zhang, W. Willinger, and L. Qiu, “Spatio-temporal
compressive sensing and internet traffic matrices (extended version),”
IEEE/ACM Trans. Networking, vol. 20, no. 3, pp. 662–676, Oct. 2011.

[3] S. Rallapalli, L. Qiu, Y. Zhang, and Y.-C. Chen, “Exploiting temporal
stability and low-rank structure for localization in mobile networks,” in
Proc. Int. Conf. Mobile Comput. Netw., Sep. 2010, pp. 161–172.

[4] Z. Li, Y. Zhu, H. Zhu, and M. Li, “Compressive sensing approach to
urban traffic sensing,” in Proc. Int. Conf. Distrib. Comput. Syst., Jun.
2011, pp. 889–898.

[5] S. Ji, Y. Sun, and J. Shen, “A method of data recovery based on
compressive sensing in wireless structural health monitoring,” Math.
Probl. Eng., vol. 2014, Jan. 2014.

[6] V. S. G. Thadikemalla and A. S. Gandhi, “A simple and efficient data
loss recovery technique for SHM applications,” Smart Mater. Struct.,
vol. 20, no. 1, pp. 35–42, Jul. 2017.
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