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Abstract—Low-rank Matrix Completion (LRMC) describes the
problem where we wish to recover missing entries of partially
observed low-rank matrix. Most existing matrix completion work
deals with sampling procedures that are independent of the
underlying data values. While this assumption allows the deriva-
tion of nice theoretical guarantees, it seldom holds in real-world
applications. In this paper, we consider various settings where
the sampling mask is dependent on the underlying data values,
motivated by applications in sensing, sequential decision-making,
and recommender systems. Through a series of experiments, we
study and compare the performance of various LRMC algorithms
that were originally successful for data-independent sampling
patterns.

Index Terms—Truncated Matrix Completion, Low Rank Ma-
trices, Missing Not at Random.

I. INTRODUCTION

Consider the Matrix Completion (MC) problem, where the
goal is to estimate an unknown m × n matrix X∗ given
only few of its entries, possibly corrupted by noise. MC has
found applications in diverse fields, including recommender
systems [16], environmental sensing [15], sequential decision-
making [10], computer vision [13], and bioinformatics [31], to
name a few. In recommender systems (RS), for example, the
matrix X∗ corresponds to ratings of items (columns) by users
(rows). MC in this case corresponds to predicting the ratings
of all users on all items based on a few observed ratings.

For the MC problem to be well-posed, the following
assumptions are used extensively: i) X∗ is inherently of low-
rank r � min(m,n); ii) X∗ satisfies incoherence conditions
[8]; and iii) the sample of observed entries is random and
independent from the matrix X∗. Let Ω ⊆ [m] × [n] be
the subset of observed indices, and X the matrix with
observed entries in Ω and zero in its complement Ωc. Let
‖A‖2F(Ω) :=

∑
(i,j)∈Ω a

2
ij for any matrix A = (aij). Then,

low-rank MC (LRMC) problem is

min
Z
‖Z−X‖F(Ω) subject to rank(Z) ≤ r. (1)

In many real datasets, the low-rank assumption is at least
approximately realistic. Further, low-rank approximations often
yield matrices that generalize well to the unobserved entries.
Incoherence is another sensible assumption; it essentially re-
quires that key information for a good low-rank approximation
can be captured with only a small sample of the matrix entries.
The assumption on the independence of the sampling mask Ω,
however, does not often hold in real world applications [1].
For instance, in a movie-ratings matrix for RS, users are more

likely to watch/rate movies that they will like. The probability
of observing ratings for those movies would be higher than the
other ones, thus violating independence from X∗. For another
example, consider a collection of environmental sensors that
monitor chemical levels in water. Those sensors are typically
most accurate in a certain calibrated range, and outside that
range the sensors will return a truncated value [21]. These
data can be treated as missing, and so in this case the missing
entries are deterministically dependent on the values of X∗.

Most methods for LRMC can be assigned to one of the two
classes: One class consists of algorithms that optimize over all
possible m× n matrices while encouraging low-rank [8, 19],
whereas the second class consists of methods that explicitly
enforce the rank r constraint in (1) [5, 14]. Several methods in
the first class replace the rank constraint by a low-rank inducing
penalty [8, 19, 29]. Most MC methods were not designed with
matrix-dependent sampling patterns in mind. The purpose of
this paper is to investigate their performance in this setting.

Our Contributions. In this paper, we study the MC problem
with data-dependent observations, i.e., when Ω depends on X∗.
Specifically, we give numerical results with three synthetic
sampling patterns motivated by real-world applications that
violate the standard assumption of data-independent sampling.
We show that some state-of-the-art MC algorithms consistently
recover X∗ under dependent sampling while others do not.

Notation. Vectors and matrices are denoted by bold letters,
i.e., x and X, with their elements indexed as xi and xij ,
respectively. Operations such as x > 0, X ≥ 0 etc. are applied
element-wise. The singular values are assumed to be arranged
in non-increasing order, i.e., σ1 ≥ σ2 ≥ · · · ≥ σr ≥ 0. For any
matrix X, we define ‖X‖∗ :=

∑
i σ

2
i , ‖X‖F :=

√∑
ij |xij |2,

and ‖X‖F(Ω) =
√∑

(i,j)∈Ω x
2
ij . The sampling operator PΩ

extracts the entries of a matrix according to Ω, such that
PΩ(X) is a vector with entries xij for (i, j) ∈ Ω.

II. RELATED WORK

Related work falls into three categories: MC with data
missing completely at random (MCAR), MC with data missing
at random (MAR), and MC with data missing not at random
(MNAR).
MC with data missing completely at random (MCAR).
The classical formulation and study of the LRMC problem
focuses on data-independent sampling patterns with MCAR
assumption [8, 5, 32, 19, 17, 12]. In particular, they assume that
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each entry is revealed at random, independent of everything
else, with uniform probability. Under this assumption, the
theoretical analysis of LRMC methods including finite-sample
consistency for both convex [8] and non-convex formulations
[14] has been provided. However, MCAR is likely unrealistic
due to the presence of unobserved factors that determine both
the entries of the underlying matrix and the missingness pattern
in the observed matrix [1].
MC with data missing at random (MAR). In this case,
entries are revealed at random, independent of the underlying
matrix and conditioned on observed covariates, with non-
uniform probability [18]. For example, in RS, covariates are
demographic and social network information of users, tags and
content information of items. When the probabilities are non-
uniform, the MC objective is biased [23] which makes LRMC
more challenging. To overcome this issue, some recent works
advocate de-biasing the objective by, for example, propensity
estimation techniques [20, 23]. The work in [9] proves LRMC
methods succeed with sampling dependent on the leverage of
the rows/columns of the matrix.
MC with data missing not at random (MNAR). In this case,
the missingness pattern of the matrix can be dependent on the
underlying values in that matrix, and observing the outcome
of one entry can alter the probability of observing another.
To address these challenges, there has been exciting recent
progress on MC methods including [6, 25, 30] under limited
version of MNAR. In particular, they assume the probability of
observing each entry is a nice function solely of latent factors.

A related literature that shares similarities with MNAR is
MC with deterministic sampling pattern [2, 3, 22, 24]. In
particular, [2, 3] consider very restricted sparsity patterns that
are not particularly suitable for important applications of MC
that arise in RS or sequential decision-making. [22] gave
deterministic sampling conditions for unique completability
and [24] provided an algebraically verifiable sufficient condition
for the local uniqueness of minimum rank MC solutions.
Despite sharing some similarities with MNAR, their missing
pattern still does not depend on the matrix values. Our work
is closely related to [1] where the authors proposed a causal
model with provable guarantees to analyze MC with MNAR
data where the probability that an entry of the matrix is missing
can depend on the underlying values in the matrix itself and
depend on which other entries are missing. Motivated in part by
[1], we aim to investigate the efficacy of the state-of-the-art MC
algorithms for recovering X∗ under various data-independent
missing patterns.

III. SAMPLING SCHEMES FOR EMPIRICAL EVALUATION OF
TRUNCATED MATRIX COMPLETION

In this section, we describe MC problems where matrix
entries are observed with a data-dependent distribution.

A. ReLU-based Sampling (ReLU-S)

In this problem, only non-negative entries of a matrix are
observed. The motivation for this mask setting is two-fold: first,
understanding recoverability of a ReLU-thresholded matrix

can provide insights about how deep neural networks are
able to learn despite the potential loss of information through
multiple ReLU layers [27]. Second, ReLU is just a special
case of more generalized thresholding. Indeed, many real-world
applications involve data clipped outside of certain range, e.g.,
voltage clipping devices [21]. Understanding recovery of ReLU-
thresholded matrices will help us in this more generic and
useful case of matrices thresholded from both sides. Given X∗,
let X ∈ Rm×n be such that X = ReLU(X∗). Therefore the
observation mask Ω is

(i, j) ∈ Ω if x∗ij ≥ 0. (2)

B. Group-Specific Sampling (GS-S)

Arguably, the most well-known application of MC is RS,
ubiquitous in modern online platforms. The motivation behind
GS-S setting is that it seeks to mimic the structure of the data
in RS. In particular, we aim to design a mask setting that
reflects the self-selection bias phenomena, where most users
tend to provide ratings if they particularly liked or disliked an
item. However, they are much less inclined to provide a rating
or even try out an item that they are lukewarm about.

The data matrix was generated using X∗ = UV> and was
re-scaled to have all entries between 1 and 5. This is similar
to RS where users’ ratings are in [1, 5]. In GS-S setting, the
mask Ω depends on the entries of X∗ with probabilities

pij =

{
0.8, if x∗ij ∈ [1, 2] ∪ [4, 5]

0.2, if x∗ij ∈ (2, 4).
(3)

This equation defines the mask Ω with smaller probability for
moderate rating or entries. Note that one can use a different
set of probabilities or clustering of X in (3) for specific
applications.

C. Mean-Centric Truncated Sampling (MCT-S)

Environmental sensing is a field where low-rank models
are appropriate [4, 26], but missing data issues can be so
prevalent to make it too challenging to estimate low-rank
models. The motivation behind the MCT-S setting is that it
seeks to mimic the data structure of measurements from sensor
nodes. For example, assume that the sensor measurements are
most accurate only within a specific calibrated range. We can
attempt to recover entries outside that range.

We aim to recover entries of matrix X∗ with values on
either side of the matrix mean (mn)−1

∑m
i=1

∑n
j=1 x

∗
ij , by

only observing the entries lying within a certain range. In our
numerical experiments, we find an α so that we observe ≈ 50%
of the total entries, i.e.,

(i, j) ∈ Ω if |x∗ij | ≤ α =⇒ |Ω| ≈ mn

2
. (4)

D. Uniformly at Random Sampling (UAR-S)

Uniform sampling is the most common model of missingness
assumed in the MC literature [8, 14, 19, 12]. Although UAR-S
is likely unrealistic outside experimental settings, this regime
remains a popular abstraction in machine learning and statistics
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to study MC problems. In the UAR-S scheme, the sampling
is independent of the underlying distribution of the data and
does not take any information from the matrix for the same.

IV. EXPERIMENTS

This section gives simulation results demonstrating the
performance of several state-of-the-art algorithms on mask
settings described in Section III. The following convex and
non-convex MC methods are compared through experimental
results:

CVX: Here, we directly solve the convex relaxation of [8], i.e.,
minimizing the nuclear norm subject to the linear constraints
produced by the observed matrix entries. The CVX environment
is a general modelling system for solving disciplined convex
problems [11]. We used the SDPT3 solver [28], a primal-dual
interior-point algorithm that uses the path-following paradigm
to solve semi-definite programming problems.
FPCA: The Fixed Point Continuation with Approximate SVD
algorithm [19] solves

min
X∈Rm×n

µ||X||∗ +
1

2
||Y −X||2F (5)

using a fixed point iterative scheme through operator splitting.
Here, µ > 0 is a regularization parameter. The default
implementation of FPCA [19] has a demo with UAR-S
sampling.
NNLS: Nuclear Norm Least Squares uses an accelerated
proximal gradient algorithm to solve the composite problem (5).
The default implementation of NNLS [29] has a demo with
UAR-S sampling.
R2RILS: Rank 2r Iterative Least Squares by [5] is a
factorization based method that estimates the row and column
subspaces of X∗, simultaneously. More specifically, given the
current estimate (Ut,Vt), R2RILS first solves

min
A∈Rm×n, B∈Rm×n

||UtB
> + AV>t −X||F(Ω) , (6)

and then uses the minimizers to obtain the new row and column
subspace estimates (Ut+1,Vt+1). In the default implementa-
tion of R2RILS, Ω was generated using a Binom(m.n, p). Here,
p = ρ · r(m+ n− r) / (mn) and ρ = |Ω| / r(m+ n− r) is
oversampling ratio.
GNMR: Gauss-Newton Algorithm for Matrix Recovery [32]
uses the Gauss-Newton linearization to solve the nonconvex MC
problem. More specifically, given the current iterate (Ut,Vt),
the new iterate (Ut+1,Vt+1) is generated by solving

min
U∈Rm×r,V∈Rn×r

‖PΩ(UtV
> + UV>t −UtV

>
t )− b‖2. (7)

Here, b is the vector of observed entries. In the original
implementation of GNMR [32], the mask Ω was repeatedly
sampled uniformly without replacement until the condition for
unique recovery of the matrix [22] was satisfied.

During our initial empirical tests we observed that SNN
(Synthetic Nearest Neighbors introduced in [1]) did not
converge for our mask settings. We conjecture this is because

we had 50% missing entries; the SNN algorithm seemed to
work well in cases where a smaller fraction of entries were
missing.
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Fig. 1: Performance of CVX and NNLS algorithms under
ReLU-S and UAR-S schemes.

Next, we discuss data generation and mask setting. For
ReLU-S and MCT-S patterns, we generate a rank r matrix
X∗ by sampling two factors U ∈ Rm×r and V ∈ Rn×r with
i.i.d. Gaussian entries and set X∗ = UV>. In the GS-S case,
seeking to mimic the structure in RS, we sample U ∈ Rm×r

and V ∈ Rn×r with i.i.d. random entries uniformly distributed
in the interval [0, 1] and then modify their multiplications such
that each xij lie between 1 and 5.

To ensure fair comparison, we set the parameters such that
all methods observe about 50 % of the entries. As discussed
in Section III , the matrices for ReLU-S and MCT-S were
generated using Gaussian entries while GS-S used randomly
sampled uniform entries. The sampling schemes were explained
in Section III.

We follow the MATLAB implementations provided by the
authors and observe that the default parameters provide near-
optimal performance; see Table I.

FPCA µ = 10−8, xtol = 10−6, itermax= 500, τ= 1
NNLS µ = 10−8, xtol= 10−4, itermax= 100, τ= 1
R2RILS tout= 40, tin= 150, rtol = 10−11, tmax= 40
GNMR tout= 100, tin= 2000, relres = 10−11

TABLE I: Parameter values for MC algorithms.

Let X∗ denote true unknown matrix and X̂ be the output of
the above algorithms. The prediction accuracy of X̂ is defined
by the normalized root mean square error:

NRMSE :=
‖X̂−X∗‖F

‖X∗‖F
and

Log-NRMSE := log10 NRMSE.

For each problem with m×n matrix X∗ with rank r, we solve
50 independently created MC problems for ReLU-S and MCT-
S and 20 independent problems for GS-S experiments. Table I
contains additional stopping criterion on the tolerance and the
number of iterations used for convergence of the algorithms.
We will consider an NRMSE of the order of 10−4 or higher
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Fig. 2: Performance of MC algorithms under ReLU-S and
UAR-S schemes.
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Fig. 3: Performance of MC algorithms under MCT-S and UAR-
S schemes.

as a failure case, successful otherwise. We note that in these
artificial settings without added noise, recovery at machine
precision is theoretically possible (NRMSE 10−11 or smaller),
however we haven’t used this as our success threshold, since
it would not be appropriate in more realistic scenarios.

In Figure 1, we compare the performance of convex optimiz-
ers NNLS and CVX for MC under the ReLU-S and UAR-S
settings. Interestingly, despite being a powerful convex solver,
CVX recovers matrices only for very low-rank structures (above
2) under the ReLU-S pattern. NNLS completely fails to recover
the matrices under this pattern. Our initial experiments indicated
that these convex optimizers gave poor results under MCT-S and
GS-S as well. Hence, we leave as future work a more extensive
investigation into why these convex optimization approaches
fail to consistently recover matrices when the sampling is
MNAR and dependent on X∗.

In Figure 2, we find that algorithms FPCA, R2RILS and
GNMR recover low-rank matrices sampled under the ReLU-
S pattern successfully when r and n are varied separately.
Furthermore, the non-convex approaches R2RILS and GNMR
recover the matrices under this pattern till ranks similar to that
in the case of UAR-S. On the other hand, FPCA, which solves
the convex relaxation, begins to fail at smaller matrix rank
with ReLU-S than with UAR-S.

Under the MCT-S pattern in Figure 3, the non-convex
approaches R2RILS and GNMR with pre-specified rank r
recover low rank matrices successfully. FPCA, on the other
hand, fails to recover matrices sampled under this pattern for
even very low rank structures. The non-convex approaches
although successful, have the drawback that matrices are
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Fig. 4: Performance of MC algorithms under GS-S and UAR-S
schemes.

recovered for structures of significantly lesser ranks than in
the case of under UAR-S.

Figure 4 shows the performance of FPCA, R2RILS and
GNMR under GS-S pattern. One can notice that FPCA
completely fails to recover the underlying matrix for both
GS-S and UAR-S patterns. We believe that the failure is due
to the large set of group structures in X in both cases while
being independent of other entries in UAR-S. This is consistent
with the group-specific RS in the literature. For example, [7]
showed that convex MC methods can lead to a larger value
of the prediction error or even failure if the data have some
non-uniform group structures. We want to highlight here that
the performance on UAR-S data in Figure 4 is different from
that in earlier figures because of different data generation
procedures. While comparing the performance of ReLU-S and
MCT-S against UAR-S, we sample uniformly over the data
matrix which is generated using low rank factorization where
the matrices U and V have i.i.d. Gaussian entries. When
comparing with GS-S, we use another UAR-S setting where
the sampling is uniformly done over the data matrix generated
using random i.i.d. entries and rescaled to values between 1 and
5. The entries are not normalized, unlike the UAR-S setting for
the ReLU-S and MCT-S. In GS-S, we observe that FPCA fails
even under the UAR-S setting, and the R2RILS performance
is diminished. Similar to ReLU-S and MCT-S experiments,
GNMR outperforms the rest of the algorithms under GS-S
pattern. GNMR recovers the matrix even when the mask Ω is
both data-dependent and MNAR for r and n varied separately.

We observe that across all three sampling schemes described
in the paper, the non-convex approaches R2RILS and GNMR
perform well across the settings, for r and n varied individually.
GNMR performs better than the other algorithms in the GS-S
setting where the structure closely resembles the nature of data
in recommender systems.

V. CONCLUSION

In this paper, we studied MC problem using three realistic
sampling patterns which are data-dependent, i.e., where Ω
depends on X∗. Our extensive numerical evaluations showed
that MC is successful for different truncated sampling patterns,
despite the standard UAR-S assumption being violated. In
particular, our results indicate that non-convex SoTA algorithms
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R2RILS and GNMR consistently recover matrices under such
realistic sampling patterns. Across all experimental settings,
we find that GNMR consistently outperforms other algorithms
described in this paper. Although initially designed for UAR-S,
it performs well for the MC with data-dependent observations.
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