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Abstract—In this paper, we propose a deep learning model
for 3D single-photon Lidar imaging through obscurants, i.e.,
in the presence of a high and non-uniform background. The
proposed method unrolls the iterative steps of a Bayesian based-
algorithm into the layers of a deep neural network. To deal
with imaging through obscurants, the method first unmix signal
and background photons in a pre-processing step. Following
this, the method builds on multiscale information to improve
robustness to noise and uses the attention framework for scale
selection within the network. Experimental results on simulated
and real underwater data demonstrate that our method can
estimate accurate depth maps in challenging situations with a
high non-uniform background. Compared to state-of-the-art deep
learning methods, the proposed method enables an estimation of
parameters uncertainties, suitable for decision making.

Index Terms—3D reconstruction, single-photon imaging, Lidar,
obscurants, algorithm unrolling, attention

I. INTRODUCTION

Single-photon Lidar is a powerful depth imaging tech-
nique when reconstructing 3D scenes in challenging low-
illumination situations and has a wide range of applica-
tions [1], [2]. Single-photon Lidar systems illuminate 3D
scenes with laser pulses and count reflected photons, obtaining
a histogram of photon counts with respect to the Time-of-
Flight (ToF). The histogram data contains information on the
depth and reflectivity of targets and reconstructing a scene
from the data has recently been the subject of study by many
researchers. One challenging situation is the presence of non-
uniform background noise in data due to obscurants [3]–[7]
such as fog. From such noisy data, robustly reconstructing
3D information is a requirement in many applications such as
autonomous driving [1].

Existing reconstruction methods can be divided into two
broad categories: statistical methods and deep learning meth-
ods. Statistical methods [8]–[10] model single-photon Lidar
data with some prior information such as spatial correla-
tion. These methods provide good interpretability, but their
solutions depend on some imposed priors and user-defined
parameters. Current deep learning methods learn features from
the data by adopting conventional architecture such as U-
net [11], [12] or a non-local block to consider long-range
correlations [13]. Such methods can generalize to unseen
photon-sparse or noisy data, but lack interpretability and often
suffer from over-smoothing effects around surface boundaries.

This work was supported by the UK Royal Academy of Engineering under
the Research Fellowship Scheme (RF/201718/17128) and EPSRC Grants
EP/T00097X/1,EP/S000631/1,EP/S026428/1.

This paper suggests a hybrid approach using a statistical
model to design a deep learning architecture for the recon-
struction of challenging Lidar data with non-uniform back-
ground. Our hybrid method unfolds an underlying Bayesian
method [14] into an interpretable neural network, where
weighted median filtering and a soft-shrinkage operator in [14]
are replaced by attention-based network layers. We general-
ize the recently proposed method [15] to imaging through
obscurants presenting non-uniform background. Our proposed
method has three main benefits. First, our unrolling approach
leads to an efficient neural network with less parameters and
with fast inference time. Second, the proposed architecture
is interpretable and produces uncertainty information on the
final output, a distinct advantage lacking in previous deep
learning methods for single-photon Lidar [11], [13]. Third,
the proposed method introduces an efficient scheme to re-
move non-uniform background photons which often degrade
previously reported deep learning methods. These advantages
are demonstrated with experiments on synthetic and real
underwater data in the presence of non-uniform background.

II. APPROXIMATE MULTISCALE OBSERVATION MODEL

A Lidar system obtains a histogram of counts yn,t at the
n-th pixel and the t-th time bin which follows a Poisson
likelihood yn,t ∼ P (sn,t) [8] with the mean sn,t given by

sn,t = rn g (t− dn) + bn,t, (1)

where rn is a target’s reflectivity, g is a system impulse
response function (IRF), dn denotes a target’s depth and bn,t
denotes the background of counts due to the environment.
To deal with obscurants, one can incorporate the background
term bn,t in the likelihood model, which might lead to a
computationally expensive algorithm. Instead, our strategy
is to remove the background counts through pre-processing
(Section IV-D) and consider a background-free approximate
likelihood model. We further assume

∑T
t=1 g (t− dn) = 1

with the total number of bins T ; the shape of the system
IRF is a Gaussian function N (· ;µ, σ) with the mean µ
and the standard deviation σ; and independent observations
with respect to different pixels. Under these assumptions, the
likelihood function for Y = {yn,t} is given by

p (Y | d, r) =

N∏
n=1

T∏
t=1

s
yn,t

n,t

yn,t!
e−sn,t , (2)
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where d = {dn} and r = {rn} are N × 1 vectors. The
maximum likelihood estimate dML

n of the depth is given by

dML
n = arg max

d

∑
t

yn,t log g(t− d). (3)

By a straightforward calculation [14], we can rewrite the
likelihood function as follows:

p (yn | dn, rn) ∝ Q (yn)G (rn; 1 + s̄n, 1)

×N (dn; dML
n , σ̄2),

(4)

where the symbol ∝ denotes the proportionality; Q is a
normalization factor depending on yn; s̄n =

∑T
t=1 yn,t and

G is the gamma distribution with shape and scale parameters,
so that G (rn; 1 + s̄n, 1) ∝ rs̄nn e−rn .

To deal with noisy data, multiscale information has been
used in many previous reported work including statistical
algorithms [9], [14] and deep learning methods [11]–[13].
Since the sum of independent Poisson distributions follows
a Poisson distribution, applying a low-pass filter with uniform
filters to a histogram will generate the down-sampled ones
which still follow Poisson distribution. We downsample the
original histogram to generate L multiscale histograms y(`)

n

with ` ∈ {1, 2, ..., L}, with the following likelihood

p
(
y(`)
n | r(`)

n , d(`)
n

)
∝ G

(
r(`)
n ; 1 + s̄(`)

n , 1
)
Q
(
y(`)
n

)
×N

(
d(`)
n ; dML(`)

n , σ̄2(`)
)
,

(5)

with s̄
(`)
n =

∑T
t=1 y

(`)
n,t and σ̄2(`) = σ2/s̄

(`)
n . We can down-

sample the histogram with respect to either spatial positions
or time bins. In this work, we will consider L = 12 and the
details are explained in Section IV-C.

III. UNDERLYING BAYESIAN ALGORITHM

We review the underlying Bayesian algorithm [14] used in
our framework. Here, we focus on estimating depth maps, but
the method [14] can also reconstruct reflectivity.

A. Prior distributions

The multiscale likelihood (5) considers multiscale depth
maps derived from different noise levels. From multiscale
information, the goal is to estimate a single depth map
x = {xn} with sharp boundaries and smooth profiles within
an object. To achieve this goal, a prior is imposed on the latent
variable x following the Laplace distribution as follows:

xn | d(1,··· ,L)
νn , w

(1,··· ,L)
νn,n , εn ∼∏

n′∈νn

[∏L
`=1 L

(
xn; d

(`)
n′ , εn/w

(`)
n′,n

)] , (6)

where L denotes the Laplacian distribution with mean and
scale parameter; νn a spatial neighborhood around the pixel
n; εn the variance of the depth xn; and w(`)

n′,n the pre-defined
weights to guide the correlation between multiscale depths and
the latent variable xn. In [14], these weights can be obtained
using guiding information such as an additional sensor.

To estimate uncertainty on the depth maps, a prior distri-
bution is also imposed on the variance of the depth maps
ε = {εn} following the conjugate inverse gamma distribution

ε ∼
∏
n

IG (εn;α, β) (7)

with small values for α, β to obtain a non-informative prior.

B. Posterior distribution

Combining the multiscale likelihood (5) with the prior dis-
tributions (6), (7) leads to the following posterior distribution

p (x, ε,D | Y ,W ) ∝ p (Y |D) p (x,D | ε,W ) p (ε) (8)

where D = {d(`)
n } and W = {w(`)

n′,n}. A coordinate descent
algorithm is considered to approximate the maximum a poste-
rior (MAP) estimator of (8). The latent variable x is updated
by a weighted median filter with the guidance weights W and
its uncertainty variable ε is given by an analytic expression.
The multiscale depths D are updated by a generalized soft-
shrinkage operator. We refer to [14] for the details.

IV. UNROLLING METHOD

We propose a deep learning model which unfolds the
underlying Bayesian algorithm [14], by replacing the internal
operations by neural network blocks. To support imaging
through obscurants, we also incorporate the background re-
moval scheme. Our method is summarized in Algorithm 1.

Algorithm 1 Proposed method
1: Input: Lidar data Y
2: Remove background counts (Sec. IV-D)
3: Construct the initial multiscale depths (Sec. IV-C)
4: Compute the depth map x by the network (Sec. IV-A)
5: Compute the uncertainty map ε (Sec. IV-B)
6: Output: x, ε

A. Network

Our network consists of K stages having the same structure
except for the last one, and the weights are not shared among
stages. As shown in Fig. 1, each stage inputs a set of multiscale
depths d and consists of feature extraction, the squeeze block
and the expansion block. The features of d are extracted by
three convolution layers with 3 × 3 filters. Throughout the
network, all the convolutional layers use the 3× 3 filters with
LeakyReLU activation except for PAConv shown in Fig. 1.

Squeeze block. The obtained features are fed into the
squeeze block which mimics the weighted median filtering
in [14]. The squeeze block relies on an attention layer named
PAConv to compute attention weights {w(`)

n } that indicate the
importance of each scale within a given pixel. The squeezed
depth x is obtained by selecting one scale for each pixel as
follows

xn = d(`′)
n , `′ = argmax

`∈{1,··· ,L}
w(`)
n , (9)
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Fig. 1. The proposed network architecture for one stage k when L = 3. Each stage consists of three main blocks: feature extraction, squeeze block and
expansion block. All the feature extraction layers consist of three convolution layers.

Expansion block. The squeezed depth x, the multiscale
depths d and its features are fed into the expansion block. This
block corresponds to the generalized shrinkage operator in [14]
and its goal is to refine the multiscale depths. To emphasize
the relative difference, the block computes |d(`)−x|,∀` whose
features are used to compute another attention weights. Unlike
the squeeze block, the expansion block computes attention
weights slice by slice, normalizing between 0 and 1. These
normalized weights w are used to compute the refined multi-
scale depths as d

(`)
= w(`)d(`) + (1−w(`))x.

The refined multiscale depths d
(`)
,∀` are again used as an

input of the next stage. The last stage considers the squeezed
depth as the final estimated depth and has no expansion block.

B. Computing the uncertainty variable

The uncertainty variable in Eq. (7) has a closed-form solu-
tion for its MAP estimator [14]. Motivated by the analytical
solution, we adopt the following formula to compute the
uncertainty of our estimated depth map:

εn =
1

K − 1

K−1∑
k=1

Ckn + β

L+ 2 + α
, Ckn =

L∑
`=1

w
k,(`)
n |dk,(`)n − xKn |, (10)

where k indicates the stage, dk,(`)n is the multiscale depth map,
xKn is the estimated depth and wk,(:)

n is the normalized values
of 1−wk

n by softmax with respect to scales, where wk is the
attention weights in the expansion block.

C. Constructing initial multiscale depths

Assuming background photons are removed, the Lidar data
is cross-correlated with the system IRF g, obtaining Y . It
is downsampled spatially by 4 uniform filters denoted by
F = {m1×m1,m2×m2,m3×m3,m4×m4} where we use
m1 = 1, m2 = 3, m3 = 7, m4 = 13, unless explicitly men-
tioned. This results in 4 downsampled histograms Y (1,2,3,4).
To deal with high noisy data, we consider 8 additional scales,
so that in total L = 12. The cross-correlated histogram Y is

downsampled by the 3D uniform filters of size m3×m3×m3

and m4 ×m4 ×m4, obtaining two additional histograms. On
each of two histograms, the spatial uniform filter F is applied,
obtaining 8 downsampled histograms Y (5,6,7,8,9,10,11,12). For
each downsampled histogram, we take the argmax operator to
obtain dML(1,2,...,12), which is the input of the network.

D. Background removal

In Section II, the observation model is derived without
considering background photons. Here, we introduce a strategy
to remove background photons which are assumed to be
spatially homogeneous for effiency. With this assumption, the
downsampled histogram y

(L)
n,t with the largest scale L can

capture the structures of background photons. This downsam-
pled histogram is used to approximate the temporal shape of
obscurants as

b̂shape
t = median

(
y

(L)
un,t

)
(11)

where un denotes the pixel indices of the lowest 20% values of
y

(L)
:,t given t, assuming those pixels contain only backgrounds

without overlapping to signals. This assumption holds unless
the target is a flat plane with the same depth values. With few
signal peaks per pixel, the background levels per pixel can be
approximated as median over time bins as follows [16]:

b̂0n = median
(
y

(L)
n,1 , y

(L)
n,2 , · · · , y

(L)
n,T

)
. (12)

Then, the background photons can be considered as:

b̂n,t = b̂0n + b̂shape
t −mean({b̂shape

t }). (13)

To avoid underestimating the background, we further add the
standard deviation of b̂n,t which is assumed to follow Poisson
distribution, to obtain our background estimation as:

bn,t = b̂n,t + η
std(b̂)

mean(b̂)

√
b̂n,t, (14)
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where η > 0 is a hyerparameter, b̂ = {b̂n,t} and
std(·)/mean(·) is known as the normalized standard devia-
tion. From the estimated background counts bn,t, the histogram
data are subtracted by bn,t, obtaining the signal counts (whose
negative values are set to zeros).

E. Training procedures

For training data, we simulate Lidar measurements based
on the Poisson model (1) and choose 30 scenes from [17],
[18] for depth and reflectivity images. We generated data with
four different scenarios of average Photons-Per-Pixel (PPP)
and Signal-Background-Ratio (SBR): (PPP=1,SBR=1), (64,1),
(1,64), (64,64). Due to memory requirements, we extract
patches of size 256×256 with stride 48 for initial multiscale
depths. We employ the `1-loss between the squeezed depths
xk with k = 1, ...,K and the ground truth depth map. Our
network is trained using the ADAM optimizer [19], 200
epochs and the learning rate 0.0001 which is decreased by
half at the 100th epoch.

V. EXPERIMENTAL RESULTS

A. Synthetic data

We evaluate the proposed method on simulated data with
non-uniform background. Lidar data is simulated from the
555 × 695 depth and intensity images of the Art scene
from [17]. As shown in Fig. 2, we impose both uniform and
non-uniform background photons with different levels of PPP
and SBR. To generate a non-uniform background, we use a
gamma-shaped function t1.2e−0.02t. In this experiment, the
hyperparameter η in Eq. (14) is set to 0.1.

Fig. 2. Simulated histogram summed over all pixels when PPP= 1 and
SBR= 0.25 with uniform (left) and gamma-shaped (right) background.

We compare our method to the classical matched filter
(Classic), the underlying Bayesian method [14] and the state-
of-the-art deep learning method (Peng) [13]. Fig. 3 shows
examples of estimated point clouds under non-uniform back-
ground noise, which highlight the robustness of the proposed
method. The last column shows the estimated depth uncer-
tainty map by the proposed algorithm. This map is a distinct
advantage of our method, compared to the previous learning-
based methods [11], [13]. Fig. 4 shows the Depth Absolute
Error (DAE) of different algorithms, i.e., the average abso-
lute difference between the ground truth and estimates. The
proposed method is more robust than [14], and shows better
performance than Peng’s method for non-uniform background,
when PPP is larger than 16 and SBR is low.

0

0.01

0

0.01

0

0.01

Halimi Peng Proposed Uncertainty
Fig. 3. Reconstructed depth maps from data with non-uniform background
when PPP=64, SBR=4 (Top), PPP=64, SBR=0.25 (Middle) and PPP=1,
SBR=1 (Bottom). The last column shows the uncertainty maps by the
proposed method.

Fig. 4. Depth Absolute Error (DAE) in log scale for different levels of SBR
and PPP with uniform (left) and gamma-shaped background (right). From top
to bottom: Classical, Halimi [14], Peng [13] and proposed algorithms.

B. Real underwater data

We evaluate the proposed method on a moving metal target
underwater, shown in Fig. 5 (a). The target is placed in a water
tank at a distance of 1.7 metres from the sensor. To test varying
scattering levels, water is combined with different quantities of
a commercial antacid drug called Mallox, resulting in turbid
water. As turbid water can scatter incoming illumination, it
leads to a non-uniform background in the histogram data
observed in Fig. 5 (b). The size of the Lidar data cube is
128×192×701.

The proposed method is used with smaller filters when
generating initial multiscale depths, setting m1 = 1, m2 = 3,
m3 = 5, m4 = 7, and we set η = 0.04. As shown in Fig. 5 (c-
e), in clean water, Peng’s method did not preserve the circular
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Fig. 5. Underwater imaging experiment. (a) picture of the target. (b) The summed histogram over all pixels from data under clean water (top) and turbid
water (bottom). The peaks on the right correspond to the target. (c-e) Reconstructed depth maps by Halimi [14], Peng [13] and the proposed method. (f)
Uncertainty map by the proposed method.

holes, while Halimi’s and proposed methods perform well. In
turbid water, Peng’s reconstruction result could not capture
the target well leading to many disconnected parts, while the
underlying Bayesian method [14] and our method yield better
results. Fig. 5 (f) illustrates the uncertainty map by our method,
showing higher uncertainty values in the case of turbid water
and around the object’s edges. We also provide the running
time and the number of parameters of the networks in the
below table. The proposed method is faster than other methods
on GPU and our network requires an order of magnitude less
parameters than Peng’s network [13].

Halimi Peng Proposed
Runtime in CPU 6.33 sec 8.41 sec
Runtime in GPU 9.78 sec 1.42 sec
Parameters 568,298 53,136

VI. CONCLUSIONS

This paper proposes a method to reconstruct depth maps
from single-photon Lidar data with non-uniform background
photons. Through the connection to the underlying Bayesian
method, it estimates accurate depth information in challenging
conditions and provides uncertainty estimation, an advantage
compared to previous deep learning methods for single-photon
Lidar reconstruction. In future, the reflectivity information will
be incorporated into the network as an additional input.
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