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Abstract—Distributed Acoustic Sensing (DAS) is a nascent
technology that facilitates the measurement of vibrations along
fibre-optic telecommunication cables, which has numerous novel
applications in many domains of science and engineering. In
the present study, we use DAS to analyse traffic along a fibre-
optic cable deployed along a major road in Nice, France. We
recently proposed to use a MUSIC beamforming algorithm for
the objective of estimating the speed of individual vehicles. To
greatly improve the accuracy and precision of the beamforming
results, we here propose a Deep Deconvolution algorithm applied
to the data prior to beamforming. The accuracy of the speed
estimation is in the range of 0.14-0.25 km h−1, which is at
least one order of magnitude better than conventional methods.
DAS therefore has great potential in urban traffic analysis
applications.

I. INTRODUCTION

Distributed Acoustic Sensing (DAS [1]) is a laser-pulsing
technology that converts fibre-optic telecommunication cables
into arrays of thousands of vibration sensors, positioned every
few metres along the fibre-optic cable. An interrogator unit
systematically sends short pulses of laser light into one end
of an optical glass fibre, and measures the phase and/or
amplitude of the back-scattered photons that have interacted
with nanometric-scale defects along its path through the fibre.
Through interferometric techniques, the (rate of) stretching of
the fibre can be inferred from the back-scattered measurement
at equidistant points along the fibre, at temporal sampling rates
up to several kHz. This has enabled numerous applications in
science and engineering, including (but not limited to) geo-
physics and seismology [2]–[4], structural integrity monitoring
[5], and hydrology [6].

One particular application of interest of the present study,
is that of vehicular traffic monitoring. As many commercial
telecommunication cables are being deployed immediately
adjacent to public roads, DAS has the ability to record the
passage of vehicles over these roads [7], [8]. When a vehicle
drives past a given location along the cable, its weight pressing
down on the road causes small deflections in the subsurface,
which is transferred to the fibre and subsequently measured
by the interrogator (see Fig. 1). By estimating the timing
at which a vehicle passes by a given sensing point, and
knowing the (fixed) spacing between sensing points, one can
precisely obtain the location and velocity of the vehicle.
Roadside DAS therefore holds enormous potential for high-
resolution traffic monitoring, and can be complementary to
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Fig. 1. a) Schematic illustration of the layout. A vehicle with velocity vi
travels along the DAS cable that was deployed parallel to the road. The spacing
between the sensors is d, with the q-th sensor being located at xq ; b) Example
of DAS data containing three cars. Each black line represents a time-series
measurement at a given sensor. Each car traces out a diagonal line in the data,
the slope of which equals its velocity.

conventional instrumentation like traffic cameras and inductive
loops embedded in the road.

To enable “smart city” applications facilitated by DAS, such
as advanced traffic control, robust and accurate DAS analysis
algorithms are needed. We recently showed in [9] that state-
of-the-art speed estimation accuracy can be achieved using a
MUSIC beamforming algorithm. To massively improve upon
the accuracy and precision of the speed estimation, we lever-
age a self-supervised, non-blind Deep Learning deconvolution
model that deconvolves the characteristic signal of cars and
other vehicles from the DAS data.
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Fig. 2. Architecture of the Deconvolution Auto Encoder. We take a set of time-series of size 1024 samples, recorded by 24 consecutive DAS sensor. This
input is passed to a U-Net Auto-Encoder and produces an output M̂ of the same size as the input. Intermediate down- and upsampling is performed with a
factor 2 along the spatial axis, and with a factor 4 along the temporal axis. The output is subsequently convolved with the known impulse response of a car,
and the learning objective is to minimise the difference between the convolved output and the original input (subject to a sparsity constraint on M ).

II. APPROACH

A. Signal model

The signal of a vehicle travelling along the fibre-optic
cable, as recorded by DAS, is the result of deformation in
the subsurface induced by the weight of the vehicle. This
deformation can be precisely modelled based on the Flamant-
Boussinesq approximation for a point load [2], [8]:
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In this model, a DAS channel is positioned at a coordinate
point (x, y, z) (x: road-tangential; y: road-perpendicular; z:
depth beneath the surface; all in units of distance) with
distance r =

√
x2 + y2 + z2 from the point load (i.e. the

vehicle) centred at the origin. The weight of the car F (units:
N) induces deformation ux in a uniform elastic medium with
shear modulus G (units: Pa) and Poisson’s ratio ν (dimension-
less), which is measured by DAS as a strain ε (dimensionless)
averaged over the gauge length d. Owing to the point-load
assumption, (1b) can be interpreted as the impulse response
of the DAS system in response a vehicle passing by a given
DAS sensor. For a given (known) position of the fibre with
respect to the road (y, z), along with estimates of the elastic
properties of the medium (G, ν), the only variable in (1b)
is the position x of the vehicle of constant weight F . In a
fixed reference frame centred at a given DAS channel q, the
x-coordinate can be replaced by the vehicle’s velocity v as
x = xq + v (t− t0) for some initial time t0 and DAS sensor
location xq , which converts (1b) into a signal model of the
DAS time series. This is illustrated in Fig. 1b, in which each
of the three cars traces out a diagonal line of which the slope is

equal to v. This time shift caused by translation of the vehicle
makes the DAS recordings amenable to beamforming analysis
[9].

B. Deconvolution Auto-Encoder

As is apparent from Fig. 1b and from the theoretical consid-
erations laid out in the previous subsection, the characteristic
signature of a car as recorded by DAS is the same for each car
(up to a proportionality constant). We can therefore achieve
higher resolution traffic measurements by deconvolving this
characteristic impulse response from the DAS data. A first
solution would be to rely on a classical deconvolution model
based on the squared loss data fidelity term regularised by a
sparsity-promoting ℓ1 term, i.e.:

m̂q = argmin
mq

{
||yq − h ∗mq||22 + λ||mq||1

}
(2)

in which yq is a vector containing the DAS time series
at channel q, h ∗ mq represents the convolution between a
characteristic impulse response h (see II-A) with an under-
lying impulse model mq at DAS channel q, and λ controls
the regularisation strength. However, this formulation, which
can be efficiently solved by a (F)ISTA algorithm [10], [11],
does not take into account the correlated nature of the DAS
measurements; when a car travels along the cable, the asso-
ciated DAS measurements {y1, y2, . . . } are not statistically
independent. As shown in a previous study [12], taking into
account this statistical dependence can greatly improve the
quality of the deconvolution results. To this end we employ a
Deep Learning model Nθ (Fig. 2) parameterised by θ, which
takes as an input a subset of the DAS data collected as a
matrix Y with lines yq and produces some output (M ) of the
same size as the input. We then convolve each line of this
model output by the (known) impulse response of a car, i.e.
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Ŷ = h∗M = h∗Nθ(Y ). We then define the learning objective
as:

θ̂ = argmin
θ

E
{
||Y − h ∗Nθ(Y )||22 + λ||Nθ(Y )||1

}
(3)

in which the expectation is taken over the distribution of
Y , which is approximated by K samples in a training set.
Following the completion of the training phase, the output of
the model M̂ = Nθ̂(Y ) is such that upon convolution with
the car’s impulse response, the original input Y is approx-
imated; the Deep Learning algorithm therefore represents a
deconvolution operation. Since all variables in (3) are only a
function of the input Y , it is clear that this learning approach
is entirely self-supervised (no “ground truth” for M needs
to be provided). Similar approaches were adopted in recent
self-supervised image denoising studies [13], [14], in which
deconvolution was a by-product of the denoising procedure.
In the present work, we focus on the deconvolution of multi-
variate time series to assess the effect of subsequent speed
analysis.

III. EXPERIMENTAL SETUP

The data analysed for this study were acquired during a
measurement campaign performed in the city of Nice, in the
south of France. The fibre was nested within a bundle of
cables firmly attached to the side of a multi-lane suspended
road crossing the city, and was sensed with an hDAS in-
terrogator (Aragon Photonics) with a channel spacing equal
to the gauge length of d = 10 m, at a temporal sampling
frequency of 250 Hz. To preprocess the data, we applied a
bandpass filter with a 0.1-2 Hz pass band, and downsampled
the data to 25 Hz. The Deconvolution Auto-Encoder was
trained on 30 minutes’ worth of data containing around 1000
cars (split 80-20 in a training and validation set) over a total of
5000 epochs. For each batch in the training set, input samples
were randomly generated from the training set, choosing a
random time and DAS channel defining the starting point of
each input sample window. The regularisation strength λ was
set to 10 (both for training and testing), which we qualitatively
assessed to provide a good trade-off between sparsity and
fidelity (higher values leading to increased sparsity). The loss
function was minimised by the Adam optimisation algorithm.
We assess the performance of the proposed workflow based on
four typical examples of DAS recordings of cars travelling to-
wards the interrogator (see top row of panels in Fig. 3). These
example recordings were deconvolved with the Deconvolution
Auto-Encoder (bottom row in Fig. 3). Both the original and
the deconvolved data were subsequently analysed with MUSIC
beamforming.

The beamforming analysis is performed as described in
[9] (using Model #1 therein), assuming a reference velocity
vref = 70 km h−1, being the speed limit of the road under
study. For visualisation purposes, all of the waveforms in
Fig. 3 are shifted in accordance with this reference velocity.
Under this transformation, a vehicle with a speed of exactly
vref would trace out a vertical line, with faster vehicles tracing

out a diagonal line from top left to bottom right (and vice
versa for slower vehicles). We apply the MUSIC algorithm to
a sliding window of 15 consecutive DAS sensor recordings,
equivalent to 140 m distance. This sliding window traverses
the data along the spatial axis, estimating the distribution of
beampower as a function of distance along the cable.

For reference, we also estimate the velocity of each selected
vehicle by estimating the timing of passage at a given DAS
sensor as the timing of the peak strain for that sensor (i.e.
by taking the peaks seen in e.g. Fig. 1b). The average
velocity between consecutive DAS channels is consequently
v = d/ (ti+1 − ti). Owing to the presence of noise in the
data (with spatially non-uniform signal-to-noise ratio), this
method is sensitive to outliers, and manual fine-tuning with a
median filter and a Savitzky-Golay filter was needed to obtain
stable estimates of the vehicle’s velocity v = d∆q/∆tpeak
over a distance interval d∆q. We suppose that the extensive
fine-tuning renders this approach based on peaks in the DAS
recordings infeasible for automated traffic analysis.

IV. BEAMFORMING RESULTS

Corresponding with the four selected vehicles shown in
Fig. 3, we plot the distribution of beampower for each ve-
hicle as a function of distance along the cable in Fig. 4.
By comparing the top row (original data) with the bottom
row (deconvolved data), it becomes immediately apparent
that the distribution of beampower is much more narrowly
distributed for the deconvolved data than for the original data.
Especially for vehicles 3 and 4 (Fig. 4c and d), the beampower
distribution for the original data is very broad and multi-modal,
which inhibits a precise estimation of the vehicles’ velocities.
By contrast, the beampower distribution for the deconvolved
data of these vehicles (Fig. 4g and h) has only a single and
sharp peak in beampower for each DAS channel, which could
be easily detected and characterised with a basic automatic
peak detector.

In comparison to the baseline estimation of the velocity
(based on peaks in the strain, as described in the previous
section), both data sets seem to be very accurate. We can
quantify this accuracy by taking the location of the peak in
beampower v̂i for each channel i, and computing the absolute
difference with the corresponding baseline estimation vbi at the
same channel. The mean absolute difference averaged over all
the channels, i.e. Ei

[
|v̂i − vbi |

]
, is indicated in each panel in

Fig. 4. Likewise, the precision of the method is estimated as
the full width at half maximum Wi (i.e. the width of the peak
at 50 % of its maximum) of the beampower peak for each
channel i: precision = Ei [Wi]. This measure is not entirely
meaningful for a multi-modal distribution like seen in Fig. 4d,
in which case the estimated precision is merely indicative.

Considering these quantitative performance metrics, we
find that the beamforming results on the deconvolved data
systematically outperform those for the original data. In the
most extreme example, the accuracy and precision for the
deconvolved data (0.17 and 1.32 km h−1, respectively) are
almost one order of magnitude better than for the original data
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Fig. 3. Top row: four selected examples of recordings of cars, characterised by a large-amplitude wiggle near the centre of each panel. The waveforms are
shifted according to a reference velocity of 70 km h−1 (see text); Bottom row: results of the Deconvolution Auto-Encoder algorithm, taking the waveforms
from the top row as an input.

(3.55 and 7.14 km h−1, resp.). Moreover, the performance
on the deconvolved data is much more consistent across
samples, which is an important aspect to consider for real-
world implementations. Previous work [12] has also shown
that the proposed deconvolution method is hundreds of times
faster than conventional, iterative deconvolution algorithms,
which is particularly relevant for real-time DAS data analysis
applications.

V. CONCLUSIONS & FUTURE PERSPECTIVES

In this paper we demonstrate the efficiency of Deep De-
convolution preprocessing to improve the accuracy of MUSIC
beamforming algorithms in estimating the velocity of isolated
cars in Distributed Acoustic Sensing (DAS) data. Particularly
when the characteristic signal of a vehicle is deconvolved
from the data do the estimated velocities achieve extremely
good accuracy and precision. With an accuracy in the range
of 0.14-0.25 km h−1 and a precision in the range of 0.82-
1.54 km h−1, DAS-based vehicle speed estimations are very
competitive compared to established traffic analysis tech-
niques. To give an example, the winning contender of the 2018
NVIDIA AI City Challenge [15] achieved an RMS accuracy of
6.6 km h−1 based on traffic camera data, using state-of-the-
art computer vision techniques. Handheld radar guns could
in principle achieve an accuracy of less than 1 km h−1, but
have a tendency to produce outlier results [16]. Since the

performance of DAS does not depend on environmental factors
(weather conditions, lighting situation, etc.), we expect DAS
to deliver accurate and consistent performance at all times.

Another major advantage of using DAS for traffic analysis,
is that the fibre-optic infrastructure it relies on is already in
place in many urban locations. While dedicated deployments
could achieve better signal-to-noise ratios as a result of specific
deployment protocols (e.g. improving coupling between the
fibre and the road [17]), existing telecom cable deployments
could be sufficient (as we demonstrate in this study). Up-
scaling DAS technologies can therefore be logistically more
feasible than discrete sensor networks (inductive loops, cam-
eras, roadside laser guns, etc.).

Lastly, we stress the notion that “smart city” applications
facilitated by DAS are still in their infancy, and that advances
in laser pulsing, fibre manufacturing, and cable deployment
technologies may yield massive improvements in the signal
quality that may bolster signal analysis algorithms in the near
future.
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Fig. 4. Overview of beamforming performance. Top row: the beampower distributions for the four selected vehicles estimated from the original data
(corresponding with the top row in Fig. 3). Bottom row: the beampower distributions estimated from the deconvolved data (corresponding with the bottom
row in Fig. 3). In each panel, we indicate the velocity estimated from the peak strain as cyan lines, and the estimated accuracy and precision as red text.
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