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Abstract—Tensor regression models have gained popularity in
problems where covariates are tensors (multidimensional arrays)
such as images. Tensor regression models are able to efficiently
exploit the temporal and/or spatial structure of tensor covariates
(e.g., in hyperspectral or fMRI images) by imposing a low-
rank assumption on the parameter tensor. In this paper, we
propose a robust tensor regression estimation method within
the framework of Kruskal tensor regression model. We consider
Huber’s concomitant criterion for regression and scale as it offers
a good tradeoff between robustness and computational feasibility.
An efficient alternating minimization algorithm is proposed for
estimating the unknown regression parameters. Our simulation
studies with synthetic image signals illustrate that the proposed
estimator performs similarly compared to benchmark method
when errors are Gaussians but offers superior performance in
heavy-tailed noise, while having similar computational complex-
ity.

Index Terms—PARAFAC, tensor regression, Huber’s criterion,
robustness, outliers

I. INTRODUCTION

In several application domains, covariates are tensors (mul-
tidimensional arrays). This is especially the case in several
imaging applications, where an acquired image may be con-
sidered as a covariate, and one would like to model the
relationship of the image covariate to a response variable,
which may be categorical or continuous. Such problem settings
lead to the development of tensor regression or classification
methods.

Tensor regression (TR) models (e.g., [1]–[3]) make use
of tensor decompositions. Traditionally tensor decompositions
have been used in psychometrics, chemometrics, or signal
processing [4], [5]. Main uses of tensor decompositions are
very similar to singular value decomposition (SVD). Namely,
they often allow to approximate a tensor with one of a lower
rank, thus providing effective compression (data reduction) as
well as denoising.

In TR model, both the covariates and the regression param-
eter are tensors. A brute force approach that vectorizes the ten-
sor covariates X i and then use traditional regression methods
to vectorized covariates fail due to ultra high-dimensionality of
the obtained regression model. Namely, mapping an I×J×K
tensor into an (IJK) × 1 vector implies a high-dimensional
linear regression model even when the dimensions I , J , and
K of the tensor are only moderately large. Such vectorizing

approach also completely ignores the structural information
within the tensor, such as possible temporal and/or spatial
correlations, low-rankness or sparsity which are often present
in applications in which the tensor covariates are images.

One of the first TR models is the Kruskal tensor regres-
sion (KTR) model proposed by [1] which assumes a linear
relationship 〈B,X i〉 between the tensor covariate X i and
tensor regression parameter B, but imposes a rank-R CAN-
DECOMP/PARAFAC decomposition (CPD) [6], [7] for B in
order to reduce the number of unknowns and for exploiting
structure present in tensor covariates. Also other tensor de-
compositions have been considered, such as the Tucker tensor
regression (TTR) model in [2], the low-rank orthogonally
decomposable tensor regression (LODTR) model in [3], or
the Bayesian estimation framework of the KTR model in [8].

In this paper, we propose a robust estimation method for
linear KTR model that can cope with outliers and heavy-tailed
error distributions. Thus far, robustness in tensor data analysis
has been considered mainly from perspectives of finding robust
estimators of tensor decomposition parameters (e.g., [9], [10]).
This work bridges this gap and brings robust estimation [11],
[12] to learning problems involving tensors. In our construc-
tion, we utilize the Huber’s [11, Section 7.7] criterion proposed
for joint estimation of regression and scale. One benefit of
this approach (as compared to many other robust regression
techniques) is that it can be computed efficiently using min-
imization majorization algorithm [13], thus providing a good
tradeoff between robustness and computational feasibility.

The paper is structured as follows. Section II gives a brief
review of basic concepts in tensor algebra and introduces the
CPD. Section III introduces the KTR model and the proposed
robust estimation method that minimizes Huber’s criterion.
Section IV provides simulation results while Section V con-
cludes.

II. TENSOR ALGEBRA REVIEW

Let B = (bi1···iD ) denote a D-way tensor of size I1×· · ·×
ID. The mode-d matricization, B(d), maps a tensor B into a
Id×

∏
d′ 6=d Id′ matrix such that the (i1, . . . , iD) element of the

tensor B maps to the (id, j) element of the matrix B(d), where
j = 1+

∑
d′ 6=d(id′ − 1)

∏
d′′<d′,d′′ 6=d Id′′ . Let vec(·) denote a

vectorization operator that transforms a tensor into a column
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vector by stacking the columns of mode-1 matricization B(1)

on top of each other.
The inner product between two tensors of same size is

defined as
〈A,B〉 =

∑
i1···iD

ai1···iDbi1···iD .

One may express the tensor inner product using vectorization
or d-mode matricization of the tensors as

〈A,B〉 = 〈vec(A), vec(B)〉 = 〈A(d),B(d)〉,

where the latter inner product for matrices can be expressed
compactly using matrix trace as 〈A(d),B(d)〉 = tr(A(d)B

>
(d)).

An outer product of vectors bd ∈ RId , d = 1, . . . , D, is an
I1 × · · · × ID rank-1 tensor, b1 ◦ b2 · · · ◦ bD, with entries
(b1 ◦ b2 · · · ◦ bD)i1···id =

∏D
d=1 bdid .

A tensor B is said to admit a rank-R CANDE-
COMP/PARAFAC decomposition (CPD) [6], [7] if it can be
expressed as a sum of R rank-1 tensors:

B ≡ JB1, . . . ,BDK =
R∑
r=1

βr1 ◦ · · · ◦ βrD,

Bd = (β1d · · ·βRd) ∈ RId×R, d = 1, . . . , D.

(1)

Tensor admitting decomposition (1) is also called as Kruskal
tensor.

Consider two matrices A = (a1 · · · an) ∈ Rm×n and B =
(b1 · · ·bq) ∈ Rp×q . If A and B have the same number of
columns n = q, then the Khatri-Rao product is defined as the
mp-by-n columnwise Kronecker product

A�B =
(
a1 ⊗ b1 a2 ⊗ b2 . . . an ⊗ bn

)
,

where ⊗ denotes the Kronecker product. If B ∈ RI1×···×ID
admits a rank-R decomposition (1), then [1]:

〈B,X 〉
= tr

(
Bd(BD � · · · �Bd+1 �Bd−1 � · · · �B1)

>X>(d)
)

=
〈
Bd,X(d)(BD � · · · �Bd+1 �Bd−1 � · · · �B1)

〉
.

III. ROBUST TENSOR REGRESSION

A. The Kruskal tensor regression (KTR) model

Given responses, yi ∈ R, and tensor-valued predictors
(covariates), X i ∈ RI1×···×ID , and conventional vector-valued
covariates, zi ∈ RI0 , the task is to learn a best possible
predictor function f(z,X ) using the available training data
T = {(yi, zi,X i), i = 1, . . . , N}.

The KTR model [1] assumes a rank-R CPD for the param-
eter tensor B in the linear model:

yi = β>0 zi + 〈B,X i〉+ ei, i = 1, . . . , N

subject to B = JB1, . . . ,BDK,
(2)

where the learnable parameters are the tensor B ∈ RI1×···×ID
with CPD and vector β0 ∈ RI0 , while ei-s are independent
and identically distributed (i.i.d.) random error terms that
are assumed to follow an unspecified distribution F (e/σ)
symmetric around zero, where σ > 0 denotes the unknown

scale parameter. We also note that an intercept can be added to
the tensor linear regression by including 1 as the first element
of the vector covariate zi. The main benefit of KTR model (2)
is its reduction of dimensionality of the parameter space. The
degree of freedom (d.o.f.) is

K = 1 + I0 +R

D∑
d=1

Id (3)

which is substantially smaller than 1+I0+
∏
d Id resulting by

simply vectorizing X i-s and then adopting conventional linear
regression model for the vectorized covariates.

In the specific case, when the array covariates are matrices
(D = 2) and rank is R = 1, so B = β1 ◦ β2 = β1β

>
2 , then

the model (2) can be expressed as a simple bilinear function
of matrix covariates X i ∈ RI1×I2 in the form

yi = β>0 zi + β>1 X iβ2 + ei.

This follows by noticing that 〈β1 ◦β2,X 〉 = tr(β1β
>
2 X

>) =
〈β1,Xβ2〉.

If one assumes that the error terms follow a Gaussian
distribution, ei ∼ N (0, σ2), then minimizing the negative
log-likelihood function is equivalent to minimization of the
residual sum of squares (RSS) criterion,

RSS(θ̃) =
N∑
i=1

(yi − β>0 zi − 〈JB1, . . . ,BDK,X i〉)2, (4)

where θ̃ denotes the set of unknown parameters in (4),
θ̃ = {β0, {Bd}Dd=1}. The problem is non-convex, but a local
minimum of (4) can be found by blockwise alternating least
squares algorithm [1], which we refer to Kruskal Tensor
Regression Least Squares (KTR-LS) estimator.

B. Robust tensor regression estimator

Consider instead a criterion function,

Q(θ) ≡ Q(σ,β0,B1, . . . ,BD)

=

N∑
i=1

ρc

(
y − β>0 zi − 〈JB1, . . . ,BDK,X i〉

σ

)
(5)

where θ denotes the set of unknown parameters in (5),
θ = {σ,β0, {Bd}Dd=1}, and ρc(·) is Huber’s loss function
[11], defined by

ρc(e) =
1

2
×

{
|e|2, for |e| ≤ c
2c|e| − c2, for |e| > c,

, e ∈ R,

with (user defined) robustification parameter c ∈ (0,∞), and
σ > 0 is the scale (dispersion) parameter of the error terms.
In the case that the scale σ is known, then Q(θ) provides a
robust alternative to RSS criterion. In practise, the scale σ of
the error distribution is unknown, and thus we consider robust
joint estimation of scale and the regression parameters and
minimize the criterion function

L(θ) = Q(σ,β0,B1, . . . ,BD)σ + α(N −K)σ, (6)
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with respect to θ, where α > 0 is a fixed (known) consistency
factor defined as [13]

α =
1

2
E[(ρ′c(e))2] =

c2

2
(1− Fχ2

1
(c2)) +

1

2
Fχ2

3
(c2), (7)

chosen to ensure that the obtained estimator of σ is Fisher-
consistent for the unknown scale σ when the error terms
have a Gaussian distribution, ei ∼ N (0, σ2). Above in (7),
Fχ2

k
(·) denotes the c.d.f. of a chi-squared distribution with

k degrees of freedom. One may view this cost function as
a generalization of RSS criterion in (4), where the LS-loss
ρLS(e) = e2 in the summation is replaced by the loss function
ρHuber(e) = σ(ρc(e/σ)+α(1−K/N)). Moreover, if the tensor
covariates are all zeros, X i = 0 ∀i, then (6) reduces to original
criterion considered by Huber [11, Section 7.7].

Although the minimization problem in (6) is not convex
in B1, . . . ,BD jointly, it is convex in Bd individually, when
keeping other parameters fixed. This implies that the stationary
solution can be found by alternating minimization (or coordi-
nate descent) scheme, updating (β0, σ),B1, . . . ,BD, in turn
while keeping other components fixed. These convex subprob-
lems can be efficiently solved using minimization majorization
(MM) algorithm developed for Huber’s criterion in [13]. The
resulting blockwise alternating minimization scheme for solv-
ing Kruskal tensor regression for Huber’s criterion, referred
to as KTR-Hub estimator, is given in Algorithm 1. Note that
the solutions are found using multiple initializations in order to
obtain an excellent local minimum. In our numerical examples,
we run for Nrep = 10 random initialisations and do the same
for alternating KTR-LS algorithm proposed in [1]. Note that
steps 1, 3 and 4 in Algorithm 1 are solved using an MM
algorithm of [13].

In Algorithm 1 one assumes that rank R is known and given
as an input to the algorithm. This is not the case in practise,
and an appropriate value of rank R should be adaptively
chosen based on the training data. We tested an adaptation
of Bayesian information criterion (BIC), so choosing a model
that minimize the criterion 2L(θ̂)+log(N)K, where K is the
d.o.f. in the model given by (3) and L(θ̂) serves as surrogate
for negative log-likelihood of rank R KTR model in BIC
criterion. However, this adaptation of BIC to tensor regression
framework did not yield satisfactory results neither for KTS-
LS or KTR-Hub methods. We leave the estimation of rank R
as a topic for future work.

IV. NUMERICAL EXAMPLES

The responses yi are generated according to model (2),
where βo = 1 ∈ R5. The regular covariate zi and the image
covariate X i are randomly generated as having i.i.d. entries
from N (0, 1) distribution. Then error terms ei-s are i.i.d. and
having different types of heavy-tailed distributions. The signal
image B is then learned through the linear association between
yi and the vector-tensor covariate pairs (zi,X i).

Figure 1 display the used image tensors B ∈ RI1×I2 and
B ∈ RI1×I2×I3 . The first image (”cross”), of size 64 × 64,
also used in the study in [1] is highly sparse with only few

Algorithm 1: Kruskal tensor regression for Huber’s crite-
rion (KTR-Hub) using blockwise alternating minimization.

input : Response y ∈ RN , covariates
{zi,X i}Ni=1 ∈ RI0 × RI1×···×ID , and rank
R ∈ N+

0 of CPD, threshold c
1 Solve (σ(0),β

(0)
0 ) as the minimizer of

N∑
i=1

ρc

(yi − β>0 zi
σ

)
σ + α(N −K)σ.

2 Draw {B(0)
d }Dd=1 ∈ RId×R random matrices.

for n = 0, 1, . . . , Niter do
for d = 1, . . . , D do

3 Compute B
(n+1)
d as the minimizer of

Q(σ(n),β
(n)
0 , . . . ,B

(n+1)
d−1 ,Bd,B

(n)
d+1, . . . ,B

(n)
D )

4 Solve (β
(n+1)
0 , σ(n+1)) as the minimizer of

Q(σ,β0,B
(n+1)
1 , . . . ,B

(n+1)
D )σ + α(N −K)σ

5 if
∣∣L(θ(n+1))− L(θ(n))

∣∣
|L(θ(n))|

< ε then

return
θ̂ ← (σ(n+1),β

(n+1)
0 ,B

(n+1)
1 , . . . ,B

(n+1)
D )

6 Repeat for Nrep (e.g., Nrep = 10) and choose the
solution that yielded the minimum value for L(θ̂).

output : θ̂, the stationary point of L(θ).
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Fig. 1: True image signals B̂.

non-zero elements (all equal to 1) forming a shape of a cross
appearing in the middle of the image. The proportion of 1-s
is 5.3% among all 642 = 4096 elements. The image in the
middle displays Aalto University logo of size 46 × 65 while
image on the right consisting of two nested cubes and a cross
has. The 3D-signal has size 24× 24× 24.

Figure 2 shows results for cross image signal when R = 2
and the noise has an ε-contaminated Gaussian distribution,
so ei-s are generated from N (0, σ2) with probability 1 − ε
and from N (0, (λσ)2) with probability ε ∈ [0, 1]. We used
parameters ε = 0.1, σ2 = 1 and λ = 20. The sample length is
N = 500. We computed the estimates B̂ for 101 Monte-Carlo
(MC) trials, and display the obtained estimates for smallest,
median, and largest root squared error, defined by

Err = ‖B̂ −B‖,

which is reported in the figure titles. We use threshold
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Fig. 2: Estimated signals B̂ ∈ R64×64 obtained by KTR-Hub
(left panel) and KTR-LS (right panel) for R = 2. Smallest
error (first row), median error (middle row) and largest error
(bottom row) over 101 MC runs. The noise is ε-contaminated
Gaussian (ε = 0.1, λ = 20), N = 500.

c = 0.732 in Huber’s loss function throughout the stud-
ies. As can be noted, KTR-Hub has superior performance
compared to KTR-LS. KTR-LS has large deviation in its
performance, and its worst case result (Err = 15.97) is noisy
with non-distinguishable structure while its best performance
(Err = 5.27) is far from the best performance (Err = 2.74) of
KTH-Hub. Figure 3 displays the obtained estimates that yield
the median error over all 101 MC trials but now for ranks
R = 1 and R = 3. As can be noted, both methods obtain
unsatisfactory results, although KTR-Hub has slight advantage
over KTR-LS. This example clearly illustrates that rank R = 2
is the most appropriate choice in this case. This does not come
as a suprise since the cross image signal is perfectly recovered
by rank-2 SVD. Thus choosing the rank optimally is important
in the KTR model.

Figure 4 displays the results for Aalto logo image signal
when the noise has a unit scale Cauchy distribution and rank
R = 4 is used in the KTR model. Here we only show the signal
image estimates corresponding to smallest error and median
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Fig. 3: Estimated signals B̂ ∈ R64×64 by KTR-Hub (left panel)
and KTR-LS (right panel) regression for MC run that had
median error over all 100 runs. Top row: R = 1, bottom row:
R = 3. The noise is ε-contaminated Gaussian (ε = 0.1, λ =
20), N = 500.

error over 101 MC trials. As can be noted, such a spiky noise
completely ruins the performance of KTR-LS method while
the proposed KTR-Hub is able to reveal the underlying image
signal. The shape of the logo is not well captured by KTR-
LS even for its best run. The best performance obtained by
KTR-Hub method is clear and on average (based on its median
performance) the KTR-Hub is able to reveal the structure of
the underlying signal. We also tested for rank R = 3 for
which results were similar to R = 4 while R = 5 produced
significantly worse results than R = 4.

Results for 3D-signal is reported in Figure 5 in the case that
the noise follows ε-contaminated Gaussian (ε = 0.1, λ = 20)
distribution and N = 1000. Again we show the signal image
estimates corresponding to smallest error and median error
over 101 MC trials. Here we used KTR-model of R = 4
which gave the best performance for both methods. Similar
improvement in performance is observed for KTR-HUB over
KTL-LS that was observed in Figure 2 with the same noise
setting.

Table I compares the system running time (measured on
a Macbook Pro laptop with a 2.3 GHz Intel Core i9) for
computing the KTR-LS and KTR-Hub (using Nrep = 10
random initial trials) in all 3 studies. The reported times are
averages over the 101 runs. It should be noted that both
methods used similar settings (same initial guesses, Niter and
Nrep values, and convergence threshold ε = 5 · 10−4). As
can be noted, the KTR-Hub provides better running time in
comparison to KTR-LS overall. This is because the alternating
minimization algorithm converges faster in case of heavy-
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Fig. 4: Estimated signal B̂ ∈ R46×66 obtained by KTR-Hub
(left panel) and KTR-LS (right panel) for Cauchy distributed
(σ = 1) noise; R = 4, N = 1000, 101 MC runs. Top/bottom
row: estimate for MC run with smallest/median error.

Fig. 5: Estimated signal B̂ ∈ R24×24×24 obtained by KTR-
Hub (left panel) and KTR-LS (right panel) for rank R = 4.
Top/bottom row: estimate corresponding to smallest/median
error over all 101 MC trials. Noise is ε-contaminated Gaussian
(ε = 0.1, λ = 20), N = 1000.

signal = cross logo 3D
R = 1 2 3 3 4 5 4

KTR-Hub 1.66 5.53 13.24 7.59 9.98 12.20 36.10
KTR-LS 1.48 7.58 17.10 6.91 11.78 19.55 48.54

TABLE I: System running times in seconds. Both methods
used the same setting with same 10 initial random guesses

tailed errors and outliers.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed robust estimation method based
on Huber’s criterion for linear Kruskal tensor regression
(KTR) model [1]. The effectiveness of the method was tested
in impulsive noise cases. Future research will focus on adap-
tive selection of rank R and adding sparsity enforcing penalties
to the KTR-Hub criterion.

Applications for real-world sensing data is currently being
investigated. For example, acquired HS images of an agricul-
tural region can be used as 3D-image covariates in applications
such as predicting the crop type or crop quality. Robust esti-
mation is an important design criterion since HS images often
contain outliers or missing data due to weather conditions such
as clouds [14]. Tensor regression and classification methods
have also been used in the analysis of high-frequency trading
data [15] which is another application where the proposed
method can be useful due to non-Gaussianity of the data.
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