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Abstract—High-dimensional variable selection is a challenging
task, especially when groups of highly correlated variables are
present in the data, such as in genomics research, direction-
of-arrival estimation, and financial engineering. Recently, the
T-Knock filter, a new framework for fast variable selection
in high-dimensional settings has been developed. It provably
controls the false discovery rate (FDR) at a given target level.
However, its current version does not consider groups of highly
correlated variables, which can lead to a loss in the true
positive rate (TPR), i.e., the power. Hence, we propose the T-
Knock+GVS filter that allows for grouped variable selection with
FDR control in such settings. This is achieved by modifying
the forward variable selection algorithm within the T-Knock
filter and by adjusting the knockoff generation process such
that the generated sets of knockoffs mimic the group correlation
structure within the original set of variables. For a special case,
we prove that the proposed T-Knock+GVS filter possesses the
grouped variable selection property. Through a simulated high-
dimensional genome-wide association study (GWAS), we show
that the proposed method significantly increases the TPR, while
controlling the FDR at the target level.

Index Terms—T-Knock filter, grouped variable selection, false
discovery rate (FDR) control, high-dimensional variable selection,
genome-wide association studies (GWAS)

I. INTRODUCTION

In many signal processing applications, the data is high-
dimensional (i.e., more variables than data points/observations)
and contains groups of highly correlated variables. For exam-
ple, in genomics research, groups of nearby and, therefore,
highly correlated single nucleotide polymorphisms (SNPs)
occur throughout the genome due to a phenomenon called
linkage disequilibrium [1]. In direction-of-arrival (DOA) esti-
mation, groups of correlated signals are often present in the
received signal at the sensor array [2]. In financial engineering,
groups of highly correlated stocks from the same or related
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industries are usually present in the data [3]. All these appli-
cations can be modeled as variable selection tasks, in which
it is necessary to select the right number of active variables
(see, e.g., [4]–[6]).

Unfortunately, popular variable selection methods, such as
the Lasso [7], adaptive Lasso [8], or even the Elastic Net [9]
that is able to select groups of highly correlated variables, do
not control the false discovery rate (FDR). The FDR is defined
as the expected value of the false discovery proportion, i.e.,

FDR := E
[
FDP

]
:= E

[ ∣∣Â\A
∣∣

1 ∨
∣∣Â∣∣

]
, (1)

where Â ⊆ {1, . . . , p} is the set of selected variables,
A ⊆ {1, . . . , p} is the set of true active variables, |Â| denotes
the cardinality of the set Â, and ∨ is the maximum operator
(i.e., a ∨ b = max{a, b}, a, b ∈ R). A method has the FDR
control property if it can determine Â such that FDR ≤ α,
where α ∈ [0, 1] is the user-defined target FDR level. The most
popular FDR-controlling variable selection methods in low-
dimensional settings are the Benjamini-Hochberg method [10]
and the Benjamini-Yekutieli method [11]. In recent years,
FDR-controlling methods for high-dimensional regression set-
tings, such as the model-X knockoff methods [12] and the T-
Knock filter [13], have been proposed.

In this paper, we build upon the T-Knock filter, whose
computational complexity is linear in p, rendering it feasible
for very high-dimensional data. The T-Knock filter also max-
imizes the number of selected variables, while maintaining
FDR control. However, the T-Knock filter is not designed for
grouped variable selection, which may lead to a decrease in the
true positive rate (TPR), i.e., the power. The TPR is defined
as the expected value of the true positive proportion (TPP),
i.e.,

TPR := E
[
TPP

]
:= E

[
|A ∩ Â|
1 ∨ |A|

]
,

where Â and A are defined as in (1).
In order to overcome this shortcoming, we propose the

T-Knock+Grouped Variable Selection (T-Knock+GVS) filter,
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Figure 1: A simplified schematic overview of the T-Knock
framework.

which integrates the Elastic Net as a forward variable selection
method into the T-Knock framework (see Figure 1). For a
special case, we prove that the proposed method possesses the
grouped variable selection property. The T-Knock+GVS filter
requires to design knockoff sets that mimic the group correla-
tion structure of the original variables. Therefore, we propose
a new knockoff generation process that generates suitable
knockoff sets consisting of groups of correlated knockoffs.

The remainder of this paper is organized as follows: Sec-
tion II briefly summarizes the existing T-Knock filter. In
Section III, the proposed T-Knock+GVS filter is introduced
and discussed. Section IV, compares the proposed method to
benchmark methods via a simulated GWAS and Section V
concludes the paper.

An implementation of the proposed T-Knock+GVS filter is
available at https://github.com/jasinmachkour/tknock.

II. THE T-KNOCK FILTER

The Terminating-Knockoff (T-Knock) filter is a fast and
FDR controlling variable selection framework for large-scale
and high-dimensional as well as low-dimensional linear re-
gression settings [13]. It considers the linear regression model

y = Xβ + ϵ, (2)

where y ∈ Rn, X = [x1, . . . ,xp] ∈ Rn×p, β =
(β1, . . . , βp)

⊤ ∈ Rp, and ϵ ∼ N (0, σ2I) with 0 being a vector
of zeros and I being the identity matrix, are the response
vector, the predictor matrix, the to be estimated coefficient
vector, and the additive Gaussian noise with variance σ2,
respectively. Following the notation of the linear regression
model, where p is the number of variables and n is the number
of data points, all settings for which p > n (p ≤ n) are
called high-dimensional (low-dimensional) settings. Moreover,
it is assumed that the support of the coefficient vector β is
sparse, i.e., only a few coefficients are non-zero, and that the
predictors are standardized, i.e.,

∑n
i=1 xij = 0, where xij is

the ith element of xj , and ∥xj∥2 = 1 for all j ∈ {1, . . . , p}.
As illustrated in Figure 1, the T-Knock filter generates

K knockoff matrices
◦
Xk ∈ Rn×L, k = 1, . . . ,K, each

containing L knockoffs (i.e., fake predictors) that are sam-
pled from the univariate standard normal distribution. These

knockoff matrices are appended to the original predictor matrix
X , which yields the so-called enlarged predictor matrices
X̃k =

[
X

◦
Xk

]
, k = 1, . . . ,K. The enlarged predictor matri-

ces are used to conduct K independent random experiments.
The random experiments are designed such that the knockoff
variables compete with the given candidate variables in X
to be included by a forward variable selection method, such
as the LARS algorithm [14] or the closely related Lasso [7].
In each random experiment, the solution path is terminated
early, as soon as a predefined number of T ≥ 1 knockoffs is
included by the forward variable selection method. This results
in the K candidate sets C1,L(T ), . . . , CK,L(T ) that contain all
candidate variables that have been included before terminating
the inclusion process after T knockoffs are included. The early
stopping leads to a drastic reduction in computation time for
sparse problems, where continuing the inclusion process leads
to including more null variables. Finally, a calibration and
fusion scheme that takes into account the user-defined target
FDR level α ∈ [0, 1] and the relative occurrences of the candi-
date variables, denoted by ΦT,L(j), j ∈ {1, . . . , p}, is applied
to determine the optimal selected active set ÂL(v

∗, T ∗), whose
general definition is given by

ÂL(v, T ) := {j : ΦT,L(j) > v}. (3)

We omit the details of how the optimal voting level v∗ ∈
[0.5, 1) and the optimal number of included knockoffs T ∗ ≥ 1
are determined such that the FDR is provably controlled at the
user-defined target FDR level while maximizing the number
of selected variables. For these details, we refer the interested
reader to the original T-Knock paper [13]. Moreover, the
authors of the T-Knock filter propose an extended calibration
algorithm that also determines the number of knockoffs L such
that the FDR is more tightly controlled at low target levels.

III. PROPOSED METHOD: THE T-KNOCK+GVS FILTER

We propose the T-Knock+GVS filter, a grouped variable
selection method that empirically controls the FDR. The
proposed method has two major innovations that distinguish
it from the original T-Knock filter:

A. It replaces the originally used variable selection method
(LARS or Lasso) by the Elastic Net, which renders it
suitable for performing grouped variable selection.

B. This replacement requires a major adjustment of the
knockoff generation process. A new knockoff generation
process that mimics the group correlation structure of
X is proposed. This necessary adjustment fosters the
generation of groups of highly correlated knockoffs that
allow for a fair competition of original variables and
knockoffs to be included along the forward variable
selection process within each random experiment.

A. T-Knock+GVS Filter: Grouped Variable Selection

The naive Elastic Net combines the Lasso and Ridge
regression. Its solution vector is given by

β̂ = argmin
β

1

2

∥∥y −Xβ
∥∥2
2
+ λ2∥β∥22 + λ1∥β∥1, (4)
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where λ1, λ2 > 0 are the weights for the sparsity inducing
ℓ1-norm penalty (Lasso) and the grouped selection fostering
ℓ2-norm penalty (Ridge regression), respectively. Since we are
interested in performing grouped variable selection, we require
a sufficiently large value of λ2, such that the grouping effect is
sufficiently strong. However, since the strength of the grouping
effect is not very sensitive to the choice of λ2, throughout this
paper we will choose λ2 by performing 10-fold cross validated
Ridge regression and fix the obtained λ2-value. With a fixed
λ2, the Elastic Net optimization problem can be reformulated
as a Lasso optimization problem [9]. So, it can be solved by
the LARS algorithm and it, therefore, can be integrated into
the original T-Knock filter.

In the following, we will prove for the special case, where
the variables within a group are perfectly correlated, that the
desirable grouped variable selection property of the Elastic Net
carries over to the proposed T-Knock+GVS filter. Considering
this idealized case is common in theory, since it reveals
whether a method is generally capable of performing grouped
variable selection [9]. First, for each standardized variable
m ∈ {1, . . . , p}, we define a group of perfectly correlated
variables Gm that contains variable m. Then, we show that
if any variable contained in Gm is selected (not selected) by
the T-Knock+GVS filter, then the entire group is selected (not
selected).

Theorem 1 (Grouped variable selection). Define ρg,m :=
x⊤
g xm and

Gm :=
{
g ∈ {1, . . . , p} : |ρg,m| = 1

}
,m = 1, . . . , p. (5)

The following two statements hold for all triples (v, T, L) ∈
[0.5, 1)× {1, . . . , L} × N+:

(i) Suppose that j ∈ Gm and j ∈ ÂL(v, T ). Then, it holds
that Gm ⊆ ÂL(v, T ).

(ii) Suppose that j ∈ Gm and j /∈ ÂL(v, T ). Then, it holds
that Gm∩ÂL(v, T ) = ∅, where ∅ denotes the empty set.

Proof. The proof is deferred to the appendix.

B. T-Knock+GVS Filter: Knockoff Generation Process

The goal of the proposed knockoff generation algorithm is
to generate knockoff matrices

◦
Xk, k = 1, . . . ,K, that mimic

the group correlation structure that is present within X .
First, in order to cluster the variables into groups of highly

correlated variables with low correlations between variables
from different clusters, we apply single-linkage hierarchical
clustering [15] to the predictors in X , where the sample
correlation is used as the similarity measure. Then, the ob-
tained dendrogram is cut at the lowest level where the sample
correlations of any two predictors from different clusters are
not higher than the threshold value ρthr = 1/3. The value of
ρthr is determined empirically, such that the resulting clusters
capture the characteristic group correlation structure of SNPs.
Such a clustering approach was proposed to be used as an SNP
clustering method in, e.g., the supplementary material of [16].
As specified in the extended calibration algorithm in [13] that

determines the value of L (i.e., the number of knockoffs), L
is a multiple of the number of predictors p. Thus, L/p sub-
knockoff matrices that mimic the group correlation structure
of X are generated and appended together to obtain the final
knockoff matrices

◦
Xk, k = 1, . . . ,K.

The annotated pseudocode of the proposed T-Knock+GVS
knockoff generation process for the generation of the kth
knockoff matrix

◦
Xk is given in Algorithm 1.

Algorithm 1 T-Knock+GVS knockoffs

1. Input: X , ρthr, L.
2. Apply single-linkage hierarchical clustering [15] to the

predictors in X and cut the resulting dendrogram at the
lowest level where the sample correlations of any two
predictors from different clusters are not higher than ρthr.
Result: Z clusters with associated disjoint variable in-
dex sets J1, . . . ,JZ ⊆ {1, . . . , p}, where

⋃Z
z=1 Jz =

{1, . . . , p}.

3. For w = 1, . . . , wmax, where wmax :=
L

p
, do:

3.1. For z = 1, . . . , Z do:
i. Compute the sub-cluster covariance matrix

Σz =
1

n− 1
X⊤

Jz
XJz

,

where XJz is the sub-matrix of X that contains
the predictors corresponding to Jz .

ii. Compute the sub-knockoff matrix

◦
Xz,w =


◦
x
′⊤
z,w,1

...
◦
x
′⊤
z,w,n

 ,
◦
x
′
z,w,i ∼ N

(
0,Σz

)
,

where ◦
x
′⊤
z,w,i is the ith row of

◦
Xz,w.

4. Output: kth knockoff matrix
◦
Xk =

[ ◦
X1,1 · · ·

◦
XZ,1 · · ·

◦
X1,wmax

· · ·
◦
XZ,wmax

]
.

IV. SIMULATED GENOME-WIDE ASSOCIATION STUDY

The goal of a genome-wide association study (GWAS) is
to detect genetic variants, so-called single nucleotide poly-
morphisms (SNPs), across the genotype (i.e., genetic material)
that are associated with a phenotype (i.e., observable and/or
measurable characteristic of the disease of interest). In order
to keep the number of false positives low and, therefore, foster
reproducible discoveries in GWAS, it is important to control
the FDR at a low target level. Since nearby SNPs across
the genome usually form groups of highly correlated SNPs
(see Figure 2), the proposed T-Knock+GVS filter is a suitable
variable selection method for GWAS. In the following, we
present and discuss the results of a simulated GWAS.

A. Performance Metrics and Benchmark Methods

The performance of the proposed T-Knock+GVS filter and
the benchmark methods are compared in terms of the FDR
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Table I The proposed T-Knock+GVS filter has the highest TPR while controlling the FDR at the target level of 20%. This
shows that its grouped variable selection property leads to an enhanced performance. However, its sequential computation time
is higher than that of the benchmark methods because of the increased row-dimension of the enlarged predictor matrices X̃k,
k = 1, . . . ,K, when solving the associated Elastic Net optimization problems via the LARS algorithm (see [9] for details).

Methods Average FDP
(in %)

Average TPP
(in %)

Average sequential com-
putation time (hh:mm:ss)

Average relative sequential
computation time

Proposed: T-Knock+GVS 16.66 58.77 00:05:55 24.41
T-Knock 4.40 47.25 00:00:14 1
model-X+ 3.84 14.03 00:00:40 2.75
model-X 7.21 44.22 00:00:40 2.75
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Figure 2: The heatmap visualizes the correlation matrix of 150
SNPs (containing three disease SNPs) that were generated us-
ing the software HAPGEN2 [17] and following the procedure
that is described in Section IV-B.

and TPR. The results show the averaged FDP and TPP over
100 Monte Carlo replications, which serve as estimates of the
FDR and TPR, respectively.

We consider the following benchmark methods: original T-
Knock filter [13], model-X knockoff+ method [12], and model-
X knockoff method [12].1 The model-X methods generate and
utilize knockoffs in a different way than the original T-Knock
filter and the proposed T-Knock+GVS filter. For more details
on the benchmark methods, we refer the interested reader
to [12] and [13].

B. Setup and Results

Similar to the setup in [13], we simulate the genotypes of
700 study participants. Here, only the first 1,000 SNPs on
Chromosome 15, of which 10 SNPs are associated with the
disease of interest, are simulated using the software HAP-
GEN2 [17] and haplotypes from the International HapMap
project (phase 3) [20]. The set of participants is divided into

1Note that a group variable selection version of the fixed-X knockoff
method [18] has been proposed in [19]. Unfortunately, however, it is designed
for low-dimensional settings and can, therefore, not be considered as a
benchmark method in our high-dimensional setting.

0.1

0.0

0.2

0.4

0.6

0.8

1.0

model−X model−X+ T−Knock T−Knock+GVS
Methods

FD
P

Median 
Mean 
Target FDR 

(a) FDP-boxplots.

0.0

0.2

0.4

0.6

0.8

1.0

model−X model−X+ T−Knock T−Knock+GVS
Methods

TP
P

Median 
Mean 

(b) TPP-boxplots.

Figure 3: The proposed T-Knock+GVS filter has the highest
TPR (i.e., average TPP), while its FDR (i.e., average FDP)
stays below the target level of 20%. The benchmark methods
do not fully take advantage of the target FDR level but stay
significantly below it, which leads to a significantly lower TPR
than the proposed method.

500 cases and 200 controls. Since this is a case-control study,
the phenotypes are binary, i.e., the case and control phenotypes
are 1 and 0, respectively. The genotypes are represented by X
in (2), where n = 700 is the number of study participants and
p = 1,000 is the number of candidate SNPs. The phenotypes
are represented by the response y in (2) with ones for cases
and zeros for controls. The specific genomic parameters for
the simulation of the data with HAPGEN2, such as the risk
alleles, heterozygote risks, and homozygote risks, are chosen
as in [13]. Also, the preprocessing of the data regarding
the minor allele frequency, call rate, and Hardy-Weinberg
disequilibrium is carried out as in [13]. However, in contrast
to the preprocessing in [13], we do not carry out SNP pruning
to reduce the dimension of the data but keep all SNPs.

Since the ultimate goal of a GWAS is to detect disease
positions on the genome and not specific SNPs, it is reasonable
to consider groups of highly correlated SNPs as active if they
contain a disease SNP (see, e.g., [12], [16]). In this regard, a
group of highly correlated SNPs is defined as a collection of
SNPs of which no SNP has a correlation higher than ρthr =
1/3 with an SNP from another collection. The choice of ρthr
is based on the same reasoning as in Algorithm 1. The results
of the simulated GWAS are presented in Table I and Figure 3
and an interpretation thereof is given in the captions.
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V. CONCLUSION

The T-Knock+GVS filter for FDR-controlled grouped vari-
able selection in high-dimensional settings was proposed. Its
FDR control property in the presence of groups of highly
correlated variables was empirically verified. Moreover, it
outperformed existing methods in terms of the TPR (i.e.,
power) on a high-dimensional simulated GWAS. Therefore,
we consider the proposed T-Knock+GVS filter to be a suitable
method for performing FDR-controlled and grouped variable
selection in high-dimensional settings.

ACKNOWLEDGEMENTS

Extensive calculations on the Lichtenberg high-performance
computer of the Technische Universität Darmstadt were con-
ducted for this research.

APPENDIX

A. Proof of Theorem 1

Proof. First, note that, without loss of generality, Gm in (5)
can be reduced to Gm =

{
g ∈ {1, . . . , p} : ρg,m = 1

}
,m =

1, . . . , p, since xg or xm can be replaced by −xg or −xm,
respectively. The variable selection process in all K random
experiments is not affected by such a replacement, because
only the sign of the associated coefficient estimate is flipped.

Second, note that the relative occurrences within the defi-
nition of the selected active set in (3) are defined by

ΦT,L(j) :=


1

K

K∑
k=1

1k(j, T, L), T ≥ 1

0, T = 0

,

where the indicator function in the first case is given by

1k(j, T, L) =

{
1, j ∈ Ck,L(T )
0, otherwise

,

i.e., it is one if the jth variable is included in the candidate
set of the kth random experiment and zero otherwise [13].

Third, note that Lemma 2 (a) in [9] states that for any strictly
convex penalty function f(β) in

β̂ = argmin
β

∥∥y −Xβ
∥∥2
2
+ λf(β),

it holds that if xg = xm, then β̂g = β̂m, g,m ∈ {1, . . . , p},
for all λ > 0. Since the elastic net penalty in (4) is a strictly
convex function of β, we conclude that ρg,m = 1 implies
β̂g = β̂m, g,m ∈ {1, . . . , p}, for all λ > 0. From β̂g,k =
β̂m,k for all λ > 0, where β̂g,k and β̂m,k are the coefficient
estimates of variables xg and xm corresponding to the kth
random experiment, it follows that

1k(g, T, L) = 1k(m,T, L)

for all k ∈ {1, . . . ,K} and all tuples (T, L) ∈ {1, . . . , L} ×
N+. Consequently, ρj,m = 1 implies ΦT,L(j) = ΦT,L(m)
for all j ∈ Gm. Thus, for all triples (v, T, L) ∈ [0.5, 1) ×
{1, . . . , L} ×N+ and for all j,m ∈ {1, . . . , p}, the following
two statements hold:

(a1) If ρj,m = 1 and ΦT,L(j) > v, then ΦT,L(m) > v.
(b1) If ρj,m = 1 and ΦT,L(j) ≤ v, then ΦT,L(m) ≤ v.
Using the definition of ÂL(v, T ) in (3), Statements (a1)
and (b1) can be translated into the following equivalent
statements that hold for all triples (v, T, L) ∈ [0.5, 1) ×
{1, . . . , L} × N+ and for all j,m ∈ {1, . . . , p}:
(a2) If j ∈ Gm and j ∈ ÂL(v, T ), then Gm ⊆ ÂL(v, T ).
(b2) If j ∈ Gm and j /∈ ÂL(v, T ), then Gm ∩ ÂL(v, T ) = ∅.
Statements (a2) and (b2) are equivalent to Statements (i)
and (ii) in the theorem.
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