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Abstract—Ultrasound image simulation is a well-explored field
with the main objective of generating realistic synthetic images,
further used as ground truth (e.g. for training databases in
machine learning), or for radiologists’ training. Several ultra-
sound simulators are already available, most of them consisting
in similar steps: (i) generate a collection of tissue mimicking
individual scatterers with random spatial positions and random
amplitudes, (ii) model the ultrasound probe and the emission
and reception schemes, (iii) generate the RF signals resulting
from the interaction between the scatterers and the propagating
ultrasound waves. To ensure fully developed speckle, a few tens of
scatterers by resolution cell are needed, demanding to handle high
amounts of data (especially in 3D) and resulting into important
computational time. The objective of this work is to explore
new scatterer spatial distributions, with application to 2D slice
simulation from 3D volumes. More precisely, lazy evaluation of
pseudo-random schemes proves them to be highly computation-
ally efficient compared to uniform random distribution commonly
used. A statistical analysis confirms the visual impression of the
results.

Index Terms—Ultrasound imaging, simulation, low discrep-
ancy, 3D slice, scatterer distribution

I. INTRODUCTION

Ultrasound imaging is used in number of medical ap-
plications due to its non-ionising, real-time and low-cost
characteristics. Therefore, a rich literature exists in the field
of ultrasound, ranging from innovative acquisition modes to
image reconstruction, processing and analysis methods. In this
context, generating synthetic ultrasound images, also known as
image simulation, plays a key role in the development and the
validation of new algorithms, allowing access to ground truth
data. Moreover, ultrasound simulation is also widely used to
provide data for training the practicians [1].

The main idea behind ultrasound image simulation is to
generate the radiofrequency (RF) signals, further used to
beamform the image, resulting from the interaction between
simulated ultrasound waves and a tissue mimicking map. The
shape of the synthetic ultrasound waves is related to the
geometry of the simulated probe and the emission strategy.
The tissue map generation is based on the assumption that
tissues are composed of small reflectors, called scatterers. The
scatterers are smaller than the wavelength, thus enabling the
diffusion of the ultrasound waves, similar to what happens
in real tissues [2]. Note that alternative solutions to scatterer
maps exist, such as image or texture-based approaches [3].

The generation of scatterer maps is controlled by their
number, spatial distribution (e.g. following a regular grid [4],
or a random distribution [2]), and amplitudes. For the latter, a

standard approach [5], [6] is to generate a random amplitude
for each scatter, usually following a zero-mean Gaussian
distribution with spatially varying standard deviation [7]. This
way of generating the scatterers’ amplitudes requires the use
of a map representative of the tissues to be simulated, e.g.,
a medical image acquired using MRI [8] or CT [9]. The
number of scatterers to be generated is a crucial parameter
to ensure fully developed speckle. It has been reported in
the literature [10] that several scatterers (of the order of tens)
should be generated per resolution cell. However, in practice
this number varies a lot depending on the approaches [1], [11],
and there is no study of the impact of this parameter depending
on the spatial sampling strategy.

Given the scatterers, the ultrasound images are computed by
simulating their interaction with ultrasound waves emitted by a
virtual probe. Usually, the simulators model the pressure field
occurring at the scatterer locations, e.g., as in Field II [7], [12]
and SIMUS [13]. Other methods exist, such as Monte Carlo
path tracing [14], or by convolving an interpolated version of
the scatterer map onto a regular grid with spatially invariant
or variant point spread functions [15]–[17].

This work focuses on the simulation of multiple 2D ul-
trasound slices from a 3D volume populated with tissue-
mimicking scatterers, allowing to generate 2D image se-
quences from a single volume, as performed experimentally in
number of applications [1], [11]. In this setting, a large amount
of scatterers is required in the 3D volume, in order to simulate
ultrasound images with fully developed speckle independently
of the slice orientation. This is challenging for large volumes,
from the perspectives of their storage and efficient extraction
for a given slice thickness. To mitigate these issues, this paper
explores different pseudo-random strategies to spatially sample
the scatterers. We propose to compute the positions of the scat-
terers using a constant sequence of random positions replicated
in each cell of a regular 3D grid, and generated on the fly
when computing the probe slice. The results reported show
the computational efficiency of this distribution compared to
existing approaches. In contrast to other approaches, we show
that fully developed speckle is obtained for a relatively low
number of scatterers per resolution cell.

II. BACKGROUND ON SCATTERER SAMPLING STRATEGIES

A key aspect of ultrasound simulation is the generation
of the scatterers map. The scatterers’ location plays an im-
portant role in the simulation process: scatterers store local
information about the simulated tissues. Several criteria have
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Fig. 1. Detail of the proposed framework: a) scatterers drawn for one cell, b) cells over the whole volume, c) generation and extraction of the scatterers
corresponding to the probe position and characteristics, d) scatterers expressed in probe coordinates, to be used for 2D slice simulation.

been proposed to define the quality of scatterer maps: spatial
density [14] (scatterers should not be too far from each others
to avoid holes), alignment to density map [8], and shape of
the simulated RF envelope [18].

Several strategies have been proposed to find optimal
scatterers’ locations. While the most common still remains
the uniform random distribution [19], alternatives have been
proposed in the literature to avoid the need for a large
number of scatterers per resolution cell, to control the maximal
distance between neighbouring scatterers or to improve their
manipulation [2]. Among these strategies, one may cite the
regular grids [4], repetitions of small distributions in large
volumes [14], [20], or random location of one scatterer per
small subvolume of the order of the resolution cell [21].

In this work, we study the analogy between scatterers’
placement and point-based sampling in Monte Carlo integra-
tion. Monte Carlo integration is based on the idea of using
random values to estimate the integral of a function: provided
that enough values are available, this kind of estimator con-
verges towards the true value of the integral. However, the
quality of the random values greatly affects the convergence
rate. Quasi-Monte Carlo methods use quasi-random or pseudo-
random sequences that keep the advantages of a random
estimator while providing properties that allow the estimation
to converge faster, i.e., for less data available.

Analogously, we propose to study how the pseudo-random
sequences used in Monte Carlo simulation improves the place-
ment of scatterers in 2D or 3D grids. To this end, we propose
to consider a specific criterion of the random sequence: the
discrepancy. This measure quantifies the coverage of the
domain by the chosen samples, i.e., the lower the discrepancy,
the better the space coverage. As for Monte Carlo integration
approaches, ultrasound simulation requires that the samples
(or scatterers) location cover the entire domain without holes.
This can be measured by comparing with how closely related
they are with the uniform random distribution. Discrepancy
can be expressed in several ways ; here, we consider the ℓ2
star discrepancy, a standard metric for random sequences [22].

Interestingly, the discrepancy of a set of samples obtained
with a given sampling strategy might evolve when the number
of samples varies. Sequences (set of n points generated) which
converge towards a discrepancy value of 0 will yield the
exact result on integration, given enough samples. Moreover,
sequences whose discrepancy decreases in O(log(n)s−1/n),
with s the dimension and n the number of samples, are usually
called low discrepancy sequences [23].

III. PROPOSED METHOD

The main contribution of this work is an approach to pop-
ulate a 3D medium with scatterers, requiring low storage and
enabling a computationally efficient extraction of the scatterers
contributing to the simulation of 2D slices, as illustrated in
Figure 1 and resumed in Algorithm 1.

As illustrated in 2D in Figure 2(a-c), different strategies may
be employed to distribute the scatterers in a volume, leading
to different types of artefacts: a) using a random distribution,
which may cause holes, b) following a uniform grid [4], which
requires a large number of scatterers, or c) by repeating the
same random sequence in all cells, which generates patterns.

To mitigate these issues, we took inspiration from the theory
of low discrepancy sequences [22], [24], [25]. The proposed
strategy, illustrated in Figure 2(d), consists in repeating mod-
ified versions of a single random sequence. More precisely,
starting from a single sequence representing 3D locations at
the cell level, we populate all the cells using the same sequence
but perturbed with random rotations. Hence, the cells do not
store the sample location, but rather hold the random rotations:
this reduces storage requirements and allows the generation of
the scatters on the fly when slicing the volume. Furthermore,
the grid of cells serves as an acceleration structure to extract
the scatterers lying in a slice with a given orientation and
thickness, speeding up the extraction process and facilitating
the manipulation of large scale volumes.

We hereafter detail our choices about the random sequence
(see Sec. III-A), the modulation of the sequence to efficiently
sample the entire volume (see Sec. III-B), and the extraction
of scatterers to sample a slice of the volume (see Sec. III-C).

A. Random sequence for scatterers’ placement
The choice of the random sequence used to fill the volume

is a crucial point, with high impact on the final distribution
of the scatterers and on the simulated ultrasound images. As
explained before, one could choose to draw the positions of
the scatterers from a uniform distribution, or to simply arrange
them on a regular grid. However, choosing more carefully a
strategy could yield better results, as supported by knowledge
on Monte Carlo integration and low discrepancy sequences
[22], [23], [24]. These low-discrepancy sequences are shown
hereafter to yield useful properties in ultrasound simulation,
while retaining a random aspect. Among the existing ap-
proaches such as Halton [24] or Sobol [25], we study in this
work a 3D generalization of Poisson disk sampling known as
relaxed dart-throwing [26]. This approach follows a simple
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Fig. 2. Example of different strategies for distributing nine scatterers per mm2 (441 samples in total): a) uniform distribution, b) regular grid, c) dart throwing
without rotations, d) proposed dart throwing with rotations.

Algorithm 1: Slices extractions from a volume
Data:
d := Scatterer density
v := Volume information
probeParams := List of probe positions and orientation
Result:
Slices := Scatterers collections to be used for simulations

1 G← createGrid(v, d)
2 foreach p ∈ probeParams do
3 cells = G.getCellsCrossed(p)
4 slice = empty()
5 foreach cell ∈ cells do
6 points = cell.generatePoints()
7 foreach point ∈ points do
8 if p.isInside(point) then
9 slice = slice+ point

10 Slices = Slices+ slice

heuristic, which rejects points that are too close to each others
until the given number is attained. If too many points are
rejected, the rejection radius is reduced.

B. Efficient volume sampling using sparse cell representation

Given a random sequence, our goal is to generate scatterers
sampling the entire volume. A first naive approach would
consist in generating and storing all the scatterers once for
all. In 3D, this approach has a cubic space complexity with
respect to the cell size.

We propose to use a stratified sampling strategy, where the
same sequence is repeated in each cell of a grid covering
the entire volume. Here, the sequence is computed once for
all, and the scatterers are generated on the fly, only for the
cells intersecting the simulation area, as described in the next
section. In order to avoid sampling patterns, each cell is
assigned with a rotation randomly generated among the 24
possibilities (rotations of the cube, modulo π/2), as illustrated
in Figure 2-d). The amplitudes of the scatterers are obtained
using a zero-mean random Gaussian generator with variance
proportional to the local properties of the 3D medium to be
simulated. In order to ensure consistent scatterer properties
across consecutive runs, each cell is also associated with a
constant seed used by the random number generator.

Fig. 3. 3D slices and resulting simulations using Field II.

C. Scatterer extraction by volume slicing
To simulate 2D ultrasound images (slices) from a volume

populated with scatterers, an extraction of the scatterers within
the probe field of view is necessary. We define the acquisition
zone with respect to the position of the probe, and the
thickness of the slice, which may vary depending on the
type of probe to be simulated. To extract the scatterers, the
proposed algorithm (detailed in Algorithm 1) first identifies
the cells intersected by the acquisition zone. For each cell that
is completely contained in the acquisition zone, i.e., its eight
corners are inside, the scatterers are directly extracted without
any further test. For the cells that are partially belonging to
the field of view, each scatterer is tested before extraction,
by projecting its spatial coordinates p in the probe coordinate
system (denoted pa), as follows:

pa = (p− ta)× r−1
a ,

with ta, ra the translation and rotation of the probe, respec-
tively. In the probe coordinate system, the acquisition zone is
an axis aligned box, against which the scatterers positions can
be checked directly.

IV. RESULTS

We implemented our algorithm using the UTK library [27],
executed on AMD Ryzen 9 5900X 3.70Ghz (single thread),
with 32go RAM. Simulation results were obtained using Field
II [7], [12], by simulating a linear probe with 192 elements
and center frequency of 3.5MHz. We show in Figure 3 an
example of a 3D volume and three different ultrasound images
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(a) Regular

(b) Uniform

(c) Proposed (no rotation)

(d) Proposed

Fig. 4. Comparison of simulation results obtained with Field II [12] for
different distribution schemes, using 1, 8, 27, 64 and 125 scatterers per mm3.

simulated from different view points. For all our experiments,
we used 1 mm3 cells, which is of the order of the axial
resolution cell, thus allowing an arbitrary position of the
probe relative to the simulated volume. In other words, the
axial direction, i.e., the propagation of the ultrasound waves,
can be simulated in any spatial direction while still ensuring
fully developed speckle. We evaluate our approach considering
visual (Section IV-A), statistical (Section IV-B) and computa-
tional (Section IV-C) characteristics, in comparison with the
following baselines: scatterers distributed uniformly in the
whole volume, scatterers distributed with stratified sampling
(using dart-throwing sequences, but no rotation), and scatterers
positioned on a regular grid.

A. Visual comparisons

In this experiment, we model a 3D volume as a cube in a
homogenous medium, and extract a slice traversing the cube
and aligned with the xy plane. We report in Figure 4 the simu-
lation results for each approach for varying scatterer densities
(from 1 to 125 scatterers per mm3). We observe that dart-
throwing produces stable and satisfying results even in low
density distribution. In contrast, the other approaches produce
specific artefacts. For instance, when using 8 scatterers per
mm3 (second row), regular sampling leads to visible patterns,
while uniform sampling produces dark holes due to irregular
local space coverage.

B. Statistical analysis

In this section, we compare the statistical properties of the
simulated images. Taking inspiration from [18], we analyze
the RF envelope of the simulated images by measuring their

Algorithm 2: Estimation of target Rayleigh distribu-
tion Dr

1 t← 32;
2 n← 343;
3 D ←emptyDistribution();
4 foreach i ∈ [0 : t] do
5 S = getScatterers(n);
6 I = simulate(S);
7 Di = computeDistribution(I);
8 D = D +Di;

9 Dr = RayleighFit( D/t );

Density Regular Uniform Proposed (no rotation) Proposed
1 0.12 0.05 0.12 0.12
8 0.12 0.5 0.12 0.12

27 0.13 1.69 0.13 0.13
64 0.14 3.91 0.14 0.14
125 0.16 7.70 0.16 0.16
343 0.28 22.89 0.28 0.29
512 0.36 31.75 0.37 0.38

TABLE I
EXTRACTION TIME (SECONDS) RELATIVE TO SCATTERER DENSITY IN A

100X100X100 MM3 VOLUME

divergence reported to a target Rayleigh distribution. To this
mean, we populate scatterers in a homogeneous 3D medium
and extract an axis-aligned slice for simulation.

According to the visual comparisons shown in Figure 4, we
assume that each sampling strategy converges to a reference
solution when increasing the number of samples. Hence, we
analyze the ultrasound images when increasing the number
of scatterers, by measuring the Kullback–Leibler divergence
between each realization and a target Rayleigh distribution Dr.
As each strategy might lead to different results, we propose
to compute a different target Rayleigh distribution for each
sampling strategy. As both the scatterers sampling and the
simulation processes are non-deterministic, we compute each
target distribution by combining multiple simulation results, as
described in Algorithm 2. We report in Figure 5-left the evo-
lution of the KL divergence for each approach, with mean and
variance values for 32 realizations. While the KL divergence
decreases for all approaches, our approach converges faster
than the three others, especially for small numbers of samples
(< 8), where the divergence is overall one order of magnitude
smaller than the regular grid. We also report in Figure 5-right
the ℓ2 discrepancy of each approach: our method has a better
average discrepancy than the regular grid or uniform sampling
strategies.

C. Performance analysis

We showed in the previous sections that our approach
produces better but comparable results than the uniform distri-
bution, and that these two approaches outperform the regular
grid. As shown in Tables I and II, the uniform approach is

Thickness Regular Uniform Proposed (no rotation) Proposed
1 0.12 3.91 0.12 0.13
2 0.14 3.91 0.13 0.14
3 0.15 3.94 0.15 0.16
4 0.17 3.94 0.16 0.17
5 0.18 3.93 0.17 0.19

TABLE II
EXTRACTION TIME (SECONDS) RELATIVE TO SLICE THICKNESS (MM) FOR

A FIXED (64) DENSITY
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Fig. 5. Evolution of KL divergence (left: mean and variance, 32 runs) and ℓ2 star discrepancy (right: mean, 100 runs) wrt. the number of scatterers (logscale).

several order of magnitude slower than our approach and the
regular grid, for volume sampling and slice extraction. In terms
of memory requirement, our approach is a stratified sampling
strategy that does not require storing the scatterers in the grid,
and thus largely outperforms the other approaches.

V. CONCLUSION

In this paper, we demonstrate the benefit of using stratified
sampling strategies for the generation and extraction of scat-
terers for ultrasound image simulation. We specifically target
the generation of multiple slices from a volume, and show
how it outperforms existing approaches in terms of visual
and statistical properties of the simulated images, as well as
memory and computational requirements.
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