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Abstract—Quantitative ultrasound (QUS) imaging comple-
ments the standard B-mode images with a quantitative represen-
tation of the target’s acoustic properties. Attenuation coefficient
is an important parameter characterizing these properties, with
applications in medical diagnosis and tissue characterization.
Traditional QUS methods use analytical models to estimate this
coefficient from the acquired signal. Propagation effects, such as
diffraction, which are difficult to model analytically are usually
ignored, affecting their estimation accuracy. To tackle this issue,
reference phantom measurements are commonly used. These are,
however, time-consuming and may not always be feasible, limiting
the existing approaches’ practical applicability. To overcome
these challenges, we leverage recent advances in the deep learning
field and propose a neural network approach which takes the
magnitude spectra of the backscattered ultrasound signal at
different axial depths as the input and provides the target’s
attenuation coefficient as the output. For the presented proof-of-
concept study, the network was trained on a simulated dataset,
and learnt a proper model from the training data, thereby
avoiding the need for an analytical model. The trained network
was tested on both simulated and tissue-mimicking phantom
datasets, demonstrating the capability of neural networks to
provide accurate attenuation estimates from diffraction affected
recordings without a reference phantom measurement.

Index Terms—quantitative ultrasound, attenuation coefficient,
neural network, convolutional layers

I. INTRODUCTION

Acoustic properties of a target tissue play an important
role in tissue characterization and diagnostic evaluation of, for
instance, kidney [1], breast [2], liver [3], [4], thyroid [5], bone
[6], and uterine cervix [7]. The accurate knowledge of these
properties is thus relevant for disease detection as well as its
progression monitoring. Ultrasound imaging provides a means
to extract these properties of interest from the measured ul-
trasound signal. This is particularly appealing as, unlike other
modalities, ultrasound makes use of non-ionizing radiation, is
inexpensive and offers portability. Conventionally, ultrasound
imaging relies on converting the acquired ultrasound signal
from the target tissue to a B-mode image. This, however,
provides only qualitative information, discarding the relevant
acoustic properties’ information present in the signal. The low
contrast in these images poses another challenge of acceptable
differentiation between different tissues types.
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Quantitative ultrasound (QUS) techniques have been devel-
oped to counteract these issues, aiming to provide quantitative
mapping of these properties on an absolute scale [8], [9].
One of the most relevant acoustic property is the attenuation,
characterized by the attenuation coefficient. It has advantages
in diagnostic studies, and it is also required for the estimation
of other clinically relevant parameters, such as the backscatter
coefficient and scatterer size [4], [10]. It thus becomes crucial
to design techniques that can provide accurate attenuation
coefficient estimates.

Various attenuation coefficient estimation techniques have
been proposed in the literature. While some rely on time-
domain signals [11]–[13], others work in the spectral domain
to extract this coefficient [14]–[19]. The latter set of tech-
niques can broadly be categorised as either relying on spectral
analysis of the acquired signal or fitting an analytical physical
signal model to the data by a chosen optimization technique.
One of the challenges encountered in attenuation coefficient
estimation is to compensate for the system-dependent effects
that influence the acquired ultrasound backscattered signal,
and which are generally difficult to model analytically. If
not compensated for, these will cause an inherent mismatch
between the acquired signal and the modelled signal, thereby
leading to estimation errors. Diffraction is one such prominent
effect, which in general is very difficult to correct for in the
time domain. In the frequency domain, a common approach
to compensate for the system-dependent effects, including
diffraction, is to use the available methods in conjuction
with reference phantom measurements [14]. It involves taking
additional measurements from a reference phantom, whose
acoustic properties are known beforehand and comparing it
with the signals from a sample. This approach, however,
might not be feasible for usage in clinical settings. First,
it requires extra measurements from a reference phantom.
With change in the adopted ultrasound system settings, these
measurements will need to be re-performed. Second, it relies
on the assumption that the diffraction effects and the speed
of sound in the reference and the sample media are the same,
which will not always hold. Another possibility to address this
issue is the consideration of plane wave propagation, where the
diffraction effects can be neglected. This is limited to specific
cases only and might not always be a practical consideration.
An ideal and generalized approach to deal with these effects
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would be to explicitly model them, which in turn could be
integrated in the physical signal model adopted by the existing
approaches. Such an analytical formulation, however, does
not always exist. Moreover, even for some specific transducer
types for which such models exist [20], its integration within
the adopted physical signal model induces non-linearity in
the overall model, resulting in optimization problems that are
difficult to solve with standard solvers.

The existing attenuation coefficient estimation methods,
which are inadequate to address the aforementioned issue
of diffraction, are primarily based on signal processing and
optimization methods to solve the underlying inverse problem.
On the other hand, recent years have witnessed a spark interest
in the domain of deep learning. It has shown remarkable
results in many application areas, often outperforming the
respective standard methods in these areas. In particular for
ultrasound, major research efforts have been focused on, for
instance, improving the image quality [21], classification [22],
segmentation [23] and beamforming [24]. The remarkable
results obtained highlight the potential of deep learning to
capture complex features in ultrasound signals, which oth-
erwise go neglected in traditional approaches. Inspired by
this, we take a first step here to implement a deep learning
approach for accurate attenuation coefficient estimation. Our
proposed approach provides an attenuation coefficient estimate
from a given set of backscattered radio-frequency signals,
without explicitly modelling the physical signal propagation.
The idea is to let the network learn to model the intricacies
and complexities of the physical effects encountered during
ultrasound wave propagation by providing it with suitable
examples. This implicitly helps in avoiding the mismatch
between the acquired signal and the modelled signal, inherent
in the existing approaches. The proposed approach thus offers
a new way to accurately estimate the attenuation coefficient,
without being affected by the estimation errors due to the
diffraction effects, which are generally not taken into account
in analytical models.

The rest of the paper is organized as follows. Section II
describes the proposed methodology along with details of the
training set considered for the proof of concept in this paper.
The experimental details, including the test data specifications
and our method’s results upon application on these datasets,
are presented in Section III. Discussion of the presented work
and the concluding remarks are provided in Section IV.

II. METHODS AND MATERIALS

A. Background

In the context of QUS, a region of interest is probed by an
acoustic wave transmitted by a transducer. Under certain as-
sumptions, the measured backscattered signal can be modelled
in the frequency domain as [14], [16]:

|S(f, z)| = |P (f)|D(f, z)A(f, z)B(f, z), (1)

where the different terms are as follows: |S(f, z)| denotes the
magnitude spectrum at frequency f of the signal backscat-
tered from depth z, P (f) is the spectrum of the transmitted

acoustic wave, D(f, z) incorporates the diffraction effects,
A(f, z) denotes the cumulative attenuation of the sample and
B(f, z) is the backscatter coefficient. For the case of soft
tissues, A(f, z) is typically given by a linear frequency depen-
dence. Considering a homogeneous medium, this translates to
A(f, z) = e−2αfz , where α is the attenuation coefficient.

The measurements |S(f, z)| are done for a range of fre-
quencies within the usable bandwidth and at different depths
within the target. The focus of the current work is then
to estimate the attenuation coefficient α given the measured
data. This is challenging as all the terms on right hand side
of eq. (1) are unknown. In practice, P (f) can be obtained
upto a scaling factor by performing a pulse-echo reflector
measurement [18]. The other terms still remain unknown.
While it is possible to analytically model B(f, z) and estimate
it simultaneously with α [16], [18], this is not the case for the
diffraction term D(f, z). For an accurate α estimation, the
existing methods either neglect these effects or compensate
for it by performing additional measurements on a reference
phantom, which makes it difficult to use in clinical settings.

B. Proposed approach

To address the aforementioned issues, we propose here
a data-driven neural network (NN) approach for attenuation
coefficient estimation. Our method relies on a convolutional
neural network, making use of the UNet architecture, which
is a popular architecture for image segmentation and other
applications [25]. The basic architecture used in the current
work is illustrated in Fig. 1, where the architecture within
the shaded region resembles UNet. The input to the network
consists of a 1 dimensional (1D) vector of the concatenated
set of backscattered signal’s magnitude spectra at different
axial depths, which is further described in the next section.
It then undergoes a downsampling and an upsampling path,
with each path constituted by ‘1D Conv’ layers: performing
a 1D convolution followed by the application of a rectified
linear unit (ReLU) as the activation function. The kernel
weights for the 1D Conv layers are initialized randomly with
a normal distribution. In the downsampling path, the two 1D
Conv layers (with 4 and 8 filters, respectively, each with a
kernel size of 3) are linked to each other via a max pooling
operation. For the upsampling path, transposed convolution in
combination with concatenation of the corresponding layer in
the downsampling path is done. This is then further processed
by a 1D Conv layer with 4 filters (kernel size 3), followed by
a 1D Conv layer with 1 filter (kernel size 1). In our case, the
network is designed to provide the attenuation coefficient as
the output, which is a scalar quantity. This attenuation estimate
is obtained from a fully connected layer.

A detailed overview of the network specifications is pre-
sented in the following.

C. Network & Input data specifications

For this proof-of-concept study, we train our network on
simulated datasets, which offers the possibility to generate a
large data sample as well as the precise knowledge of the
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Fig. 1. Illustration of the basic architecture of the proposed neural network approach for attenuation coefficient estimation. It is based on the UNet architecture,
with the usage of a fully connected layer at the end to obtain a single attenuation coefficient for each input data. The input data to the network is a 1D vector
of the backscattered ultrasound signal’s magnitude spectra concatenated at different axial depth points.

ground-truth attenuation coefficient. Moreover, the data needs
to be diverse to avoid issues with overfitting and generalization
to new data. With this in mind, the data was generated in the
Field II simulator [26] using a 3.5 MHz transducer for a 60 mm
medium consisting of randomly distributed scatterers. Data
with 5 different realizations of the scatterer’s random positions
were simulated. For the attenuation coefficient α, 20 different
values between 0.5 to 2 dB/cm/MHz were considered to train
the network on datasets with different attenuation values.
Further, for each case, the data was generated using 6 different
focal lengths of the transducer to ensure incorporation of a di-
verse set of diffraction affected spectra in the training data. The
generated data consists of the backscattered radio-frequency
(RF) lines, which were then converted to the frequency domain
to get the magnitude spectrum. This process involves dividing
the whole axial depth into multiple windows and computing
the magnitude spectrum for each of the windowed signal via
a discrete Fourier transform [18]. In the current setting, we
considered a window length of 4 mm with 50% overlap and
15 dB usable bandwidth, which resulted into 28 windows and
452 frequency points in each windowed spectrum. Finally, the
input to the proposed network was the obtained magnitude
spectrum, concatenated over different depths/windows in a 1D
vector, for a given RF line.

The data was augmented to include scaled copies as well
as different crops of 15 subsequent windows from the total
depth of 28 windows (thereby reducing the input dimension
of the network). While the former ensures scale-invariance
of the trained network, the latter is used to warrant its shift-
invariance. This resulted in the input dataset with ∼ 400,000
samples, with each input vector of size 6780. The dataset
was randomly divided in a training, validation and test set,
containing 75%, 15% and 10% of the data, respectively.

TABLE I
ACOUSTIC PROPERTIES OF THE TISSUE-MIMICKING PHANTOMS USED FOR

THE PROPOSED APPROACH’S TESTING.

Phantom Attenuation speed of sound
coefficient (dB/cm/MHz) (m/s)

First set 1,2 0.61 1546
3 0.63 1552

4,5 0.84 1520

Second set 6 0.65 1492
7 0.67 1492

The network has ∼ 7000 parameters, trained using Keras1.
The mean squared error between the network’s output and the
ground-truth attenuation coefficient value was used as the loss
function. The Adam optimizer [27] with learning rate set to
10−4 was employed. 50 epochs were considered with a batch
size of 100. These hyperparameters (including the network
dimensions) were manually and empirically tuned based on
performance on the validation set.

III. EXPERIMENTS

A. Test data specifications

The performance of the network was assessed on the simu-
lated data test set, as well as on real ultrasound data recorded
from different tissue-mimicking phantoms. The details of the
used phantoms can be found in [17], [28]. The measurements
were performed in pulse-echo mode with a single transducer
acting as both emitter and receiver. Two sets of homogeneous
phantoms were considered with their attenuation coefficients
given in Table I. For the first set [28], the data was collected

1https://keras.io/

904



Proposed NN approach LLS

0

0.1

0.2

0.3

0.4

0.5

0.6
R

e
la

ti
v
e
 e

rr
o
r 

o
f 

 e
s
ti
m

a
ti
o
n RMSE = 0.13 RMSE = 0.22

Fig. 2. Results on simulated test data showing relative error of attenuation
coefficient (α) estimation as obtained by the proposed neural network (NN)
approach and the benchmark LLS method. The obtained RMSE value in the
two cases is listed at the top of each box plot.

using three different types of flat unfocused single-element
transducers: a V306-SU with center frequency of 2.25 MHz
and 60% bandwidth, an A306-SU with center frequency of
2.25 MHz and 50% bandwidth and a V309-SU with center
frequency of 5 MHz and 65% bandwidth (Panametrics NDT,
Inc., Waltham, MA). The measurements were performed in
the far-field of the respective transducers to avoid near-field
diffraction effects. Therefore, we expect model-based atten-
uation estimators to work relatively good, even without a
normalization via a reference phantom.

The second phantom dataset is the one from [17], for which
the data for the sample phantom was taken along with a
reference phantom so as to compensate for the diffraction
effects. Within the context of the current work, the measure-
ments for the sample and reference phantom, each one of
which is affected by diffraction effects, were used separately.
A 9L4 linear array transducer on a Siemens Acuson S3000
(Issaquah, WA) with a center frequency of 6.6 MHz was
used to acquire 10 uncorrelated RF data frames. For both
phantom datasets, the data was normalized with the respective
transducer’s impulse response function.

As a benchmark, we use a state-of-the-art model-based
attenuation estimator from [18], which casts the analytical
model (1) to a linear least squares (LLS) problem. It has been
shown to outperform other approaches in the literature, both in
terms of accuracy and variance. However, this method works
in cases where the diffraction effects are negligible or can be
compensated for using reference phantom measurements.

Finally, for the method’s performance assessment, we report
two metrics. First, for the ith data sample, with i ∈ {1, . . . , N}
(N being the total number of data samples in the test set), the
relative error between the true attenuation coefficient αi and
the estimated value α̂i is defined as: Rel erri = |αi − α̂i|/|αi|.
Second, the standard metric of root mean square error (RMSE)
between the true and the estimated attenuation coefficient was
computed as: RMSE =

√∑N
i=1(αi−α̂i)2

N .

TABLE II
RESULTS ON PHANTOM DATA SHOWING RELATIVE ERROR AND RMSE OF

ATTENUATION COEFFICIENT (α) ESTIMATION AS OBTAINED BY THE
PROPOSED NEURAL NETWORK (NN) APPROACH AND THE BENCHMARK

LLS METHOD.

Phantom Relative error RMSE
Proposed NN LLS Proposed NN LLS

approach approach

1 0.23 0.31 0.16 0.19
2 0.11 0.27 0.09 0.17
3 0.06 0.03 0.08 0.02
4 0.15 0.10 0.08 0.04
5 0.12 0.25 0.11 0.16
6 0.40 1.01 0.27 0.71
7 0.24 1.05 0.16 0.70

B. Results

a) Simulated test data: The results obtained by applying
the proposed NN approach and the benchmark LLS approach
on the simulated test data are depicted as box plots in
Fig. 2, indicating the spread of errors over the considered
large number of samples. Our approach provided attenuation
coefficient estimates with ∼ 6% lower mean relative error and
9% lower RMSE than the LLS estimates.

b) Tissue-mimicking phantom data: Table II illustrates
the attenuation coefficient estimation errors (relative error and
RMSE) as obtained by the proposed NN approach and the
LLS method on the two phantom datasets. In this case, given
only 10 data samples per phantom, the relative error averaged
over these samples is reported. For the first set, in most of
the cases, the NN approach performed better than LLS, with
an overall mean error of 15% compared to 19.36% for LLS,
computed over all the phantoms.

For the second type of phantom data, the proposed approach
provided attenuation coefficient estimates with much lower
errors than LLS estimates. For the latter, the estimates were
highly inaccurate, with a relative error > 100%.

IV. DISCUSSION AND CONCLUSION

We have presented a neural network (NN)-based approach
for attenuation coefficient estimation in quantitative ultrasound
imaging. Our method is based on a NN architecture that takes
the magnitude spectrum of the backscattered ultrasound signal
at different axial depths as the input and provides an estimate
of the attenuation coefficient of the underlying medium as the
output. It benefits from learning the complex physical effects
encountered in the signal propagation path, without relying
on an explicit analytical model, which might not always exist,
e.g., for diffraction effects. We considered different types of
datasets, both simulated as well as experimental data from
tissue-mimicking phantoms to test the network’s performance.
While the network was trained only on simulated data, the
results showed it performed well even on phantom data.
Moreover, the proposed approach performed better than the
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benchmark linear least squares (LLS) based method, especially
for the case of phantoms largely affected by diffraction effects.

For the first phantom dataset, it can be observed that
even in the case when the experiment was performed in the
transducer’s far-field to diminish the diffraction effects as
much as possible, the proposed approach performed better
than LLS. Further, for the case with measurements highly
influenced by the diffraction effects, we tested our approach
without considering the reference phantom measurements to
compensate for these effects. Our approach managed to esti-
mate the coefficients with a much lower estimation error than
LLS (without compensations via a reference phantom). These
findings put forward the current work as a proof-of-concept
study, highlighting that the NN approach has the potential to
surpass the estimation performance by the existing approaches
without requiring an analytical signal model. Inclusion of more
diverse data, for instance, with different transducer settings on
various tissue-mimicking phantoms, for training the network
can potentially lead to even better performance. This is further
expected to alleviate the current need of data normalization
with the transducer’s impulse response function.

The current work considered homogeneous medium set-
tings, both for simulated as well as tissue-mimicking phantom
data. In practical scenarios with heterogeneous medium, i.e.
spatially varying attenuation coefficient, our approach can
be applied on the homogeneous regions-of-interest selected
within the heterogeneous medium. Further extension of the
approach to a fully automated attenuation mapping of the
target heterogeneous medium needs to be investigated and will
be explored in future.
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