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Vlatacom Institute

University of Belgrade,
School of Electrical Engineering

Belgrade, Serbia
miljko.eric@vlatacom.com

Nenad Vukmirović
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Abstract—In this paper we present a novel high-resolution
algorithm for primary signal processing in High Frequency
Surface Wave Radar (HFSWR). The high-resolution properties
of the algorithm contribute to better ship detectability, as well as
the ability to detect some ships, which are not visible at all using
the currently used primary signal processing algorithms. The
proposed algorithm is based on a high-resolution estimate of the
range-Doppler map. We also proposed a numerically efficient
Image Processing method for detection on the range-Doppler
map. Azimuth estimation is performed by a high-resolution
MUSIC-type algorithm that is executed for all targets detected
on the range-Doppler map. The experimental results showed that
the percentage of successful detections was high.

Index Terms—HFSWR, OTHR, high-resolution methods,
range-Doppler map, ship detection

I. INTRODUCTION

High Frequency Surface Wave Radars (HFSWRs) are
widely used for maritime surveillance of ships at long dis-
tances (up to 370 kilometers). Numerous published papers
discuss theoretical as well as practical implementation aspects
of HFSWR radars [1]- [3].

We have shown [4]- [6] that the multidimensional signal at
the output of the dechirper can be modeled as a superposition
of ionospheric interference, sea clutter, additive noise, and
attenuated sinusoids (cissoids) in 3D space, i.e., fast-time,
slow-time, and spatial domain. The domains correspond to the
range, Doppler/radial velocity and azimuth of one target in a
multi-target scenario, typical for HFSWRs, respectively. The
first task of the proposed algorithm is to detect the number
of superposed cissoids, i.e., the number of targets. The second
task is to estimate the frequencies of these cissoids in the fast-
time, slow-time, and spatial domain, which is equivalent to the
estimation of their parameters (range, Doppler/radial velocity
and azimuth).

Target detection performance depends on the chosen de-
tection method. Constant False Alarm Rate (CFAR) detection
methods are usually used in Frequency Modulated Continuous
Wave (FMCW) HFSWRs, as explained in [7]. But some other
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detection methods like [8]- [11] are also proposed in the liter-
ature. CFAR detectors with adaptive treshold are widely used
in HFSWR radars. In the paper we applied a kind of a detector
which comes from image processing proposed by Natan [12].
The starting hypothesis of the authors was that such kind of
detector is more suitable for detection in high resolution range-
Doppler map than clasical CFAR. The reason for this is that
propagation of noise in FFT-based range-Doppler estimation
is predictable, but it is not predictable in high resolution
methods. So, the question is if the optimal CFAR detector
for detection in the classical RD-FFT map is also optimal
for detection in the high-resolution RD-HR map. The other
reason is that the applied image-based detector includes a
kernel function, which can be optimised for specific shapes of
taget lobes in RD-HR map and to improve target detectability.
In the given application, we optimised the parameters of the
applied detector (type of kernel, threshold levels, etc.) and
compared the results with the results provided by a clasical
CFAR detector. Furthermore, the nature of the MUSIC-based
criterion function is more suitable for application of such kind
of detectors, especially for close ranges in the RD-HR map.

Because target detection is still a challenging research
problem, high-resolution methods for range/Doppler/azimuth
estimation are in the focus of many scientific papers as
presented in [13]- [15]. More detailed results of the research
were presented in [16].

The paper is organized as follows. In Section II we pre-
sented the signal model. In Section III, we presented a detailed
algorithm description: High-resolution range-Doppler map es-
timation (uniform/non-uniform sampling method in slow-time
domain). In that section, we explained also the process of
detection on the range-Doppler map, and an improved method
for azimuth detection. We discussed some experimental results
in Section IV and made some conclusions in Section V.

II. SIGNAL MODEL

The transmitter (Tx) and the receiver (Rx) array are synchro-
nized in time and phase. The Tx transmits a periodic sequence
of chirps at a carrier frequency fc. The complex model of a
single chirp, denoted by c(t), is
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c(t) = ej2πψ(t), t ∈ [0, T ) (1)

ψ(t) =

t∫
0

f(θ)dθ (2)

f(t) = fc −
B

2
+
B

T
t, (3)

where ψ(t) is a phase function expressed in cycles and f(t)
is a frequency ramp, which yields

ψ(t) =

(
fc −

B

2

)
t+

B

2T
t2. (4)

The transmit waveform, denoted by r
(
t̃
)
, is then given by

r (t) = c(t), 0 ≤ t < T (5)

r
(
t̃
)
= r

(
t̃+ T

)
, −∞ < t̃ < +∞, (6)

where t̃ is a continuous time variable that spans the entire
time-axis, whereas t is the time elapsed from the beginning of
a chirp. We also define the index of a chirp, m, such that

t̃ = mT + t, m ∈ Z, 0 ≤ t < T. (7)

Note that the mutual dependence of the variables t̃, t, and m
is implied.

The signal reflected from the q-th target and then received
by antenna n, n ∈ {1, 2, . . . , N}, is

x(q)n
(
t̃
)
= ar

(
t̃− τ (q)n

(
t̃
))

(8)

τ (q)n

(
t̃
)
=

2

c
R
(
t̃
)
+ τAn (9)

R
(
t̃
)
≈ Rm + vmt, (10)

where a ∈ R is an attenuation factor, τ (q)n

(
t̃
)

is the two-way
propagation time for the target to antenna n, c is the radio wave
propagation velocity, R

(
t̃
)

is the range to the target relative
to the referent point of the Rx array, Rm = R(mT ), vm is
the radial velocity of the target during the m-th chirp (and is
assumed constant during each chirp), τAn is the delay at the
n-th antenna relative to the referent point of the Rx array.

Instead of performing classical demodulation, the received
signals are fed to a dechirper, which multiplies them by a
conjugated replica of the Tx waveform. The signal at the
output of the dechirper is given by

y(q)n
(
t̃
)
= x(q)n

(
t̃
)
r∗

(
t̃
)
. (11)

In practical applications, we have that 0 < τn
(
t̃
)
≪ T , so

the end of the (m − 1)-st chirp in xn
(
t̃
)

and the beginning
of the m-th chirp in r

(
t̃
)

overlap in only a small fraction
of time. For other t̃, the component of the dechirped signal
corresponding to a stationary target is a simple cissoid. In the
Rx, the received signal is given by

yn
(
t̃
)
= ηn

(
t̃
)
+
∑
q

y(q)n
(
t̃
)
, (12)

where ionospheric interference, sea clutter and additive
noise are modeled by ηn

(
t̃
)
, and the sum is over all the targets.

Finally, the dechirped signals are sampled at a rate fs and fed
to the algorithm.

III. ALGORITHM DESCRIPTION

The samples are grouped into P -sample-long frames, where
the length of each frame corresponds to the length of the
chirp, T . Then, M = 256 successive frames are grouped
into a segment. Adjacent segments overlap – the last 128
frames of a segment are the first 128 frames of the next
segment. A segment is represented by a 3D matrix of samples
Y ∈ CM×P×N , whose elements are

ym,p,n = yn ((m− 1)T + (p− 1)/fs) , (13)

for 1 ≤ m ≤ M , 1 ≤ p ≤ P , 1 ≤ n ≤ N . Next, the
elements of each row of Y are weighted by a Blackman-Harris
window function, i.e. the row is multiplied element-by-element
by wP = [w1, w2, . . . , wP ] ∈ R1×P . Then, the P -sample-
long FFT (Fast Fourier Transform) is performed on each row
(for each frame and each antenna) to obtain a matrix S ∈
CM×P×N .

The WERA (WavE RAdar) primary signal processing is
used as a benchmark. In WERA the next step is to per-
form weighting on each column of S by another Blackman-
Harris window, w⊤

M = [w′
1, w

′
2, . . . , w

′
M ]

⊤ ∈ RM×1, and
perform M -sample-long FFT on it. As a result, a matrix
H ∈ CM×P×N is formed. This matrix can be thought of
as having the ”Doppler”, the ”range”, and the ”antenna”
dimension, and since it is obtained by FFT, we call H the
RD-FFT (Range-Doppler) map. The next steps in WERA are
the CFAR detection of targets in the RD-FFT map, followed
by angle-of-arrival estimation for the detected targets using
classical single-snapshot beamforming.

A. High-Resolution Range-Doppler Map Estimation – Uni-
form Sampling

The resolution of the RD-FFT map is limited by the
resolution of the FFT, so we propose another algorithm to
improve on this, with the following steps. We extend the
matrix S = [sm,p,n] by including the next r(L − 1) frames
to get S′ ∈ C(M+r(L−1))×P×N , where r and L are algorithm
parameters. We then form new matrices Qp,n ∈ CM×L,
(∀p, n), such that

[
Qp,n

]
m,l

=
[
sm+r(l−1),p,n

]
, where [A]i,j

denotes the (i, j)-th element of A. Then the covariance ma-
trices Cp,n ∈ CM×M are formed for n = 1, 2, . . . , N and
p = P −R+ 1, P −R+ 2, . . . , P as follows:

Cp,n =
1

L
Qp,nQH

p,n, (14)

where R is determined by the maximum radar range.
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Since Cp,n is Hermitian positive definite, its eigenvalues are
all positive. We propose to use a MUSIC-type algorithm, to
get the RD-HR (High Resolution) map:

PRD
MUS(µ, p, n) =

1

∥aµ(µ)HEp,n∥
, (15)

where Ep,n ∈ CM×(M−K) is the noise subspace matrix whose
columns are the eigenvectors corresponding to the M − K
smallest eigenvalues of Cp,n, where K is a parameter of the
algorithm, and aµ(µ) ∈ CM×1 is a steering vector formulated
in the normalized Doppler domain as

aµ(µ) =
[
1, e−jµ, . . . , e−jµ(M−1)

]⊤
, (16)

where µ is the normalized Doppler frequency in radians per
frame. The RD-HR map is calculated for a discrete set of
points in the range of interest along each dimension, with a
resolution that is many times better than the one of the RD-
FFT map.

B. High-Resolution Range-Doppler Map Estimation – Non-
Uniform Sampling

It was found that, in the uniform sampling method, the
conditional number of the matrices Cp,n were in the order
of 1019 (they were close to singular matrices), which created
problems in their eigenvalue decomposition. The numerical
complexity was also very high. To cope with these issues, we
propose to use non-uniform sampling across the frames. This
problem is analogous to selecting a small subset of antennas
of an ULA, such that the performance of the array does not
degrade significantly (a problem in the field of minimally
redundant linear antenna arrays). Namely, we select a subset of
J rows of the matrix Qp,n by choosing an appropriate mapping
ℓ : {1, 2, . . . , J} → {1, 2, . . . ,M}, J < M . We then form
Q(ℓ)
p,n as [

Q(ℓ)
p,n

]
j,l

=
[
Qp,n

]
ℓ(j),l

. (17)

Thus, we get a much smaller covariance matrix

C(ℓ)
p,n =

1

L
Q(ℓ)
p,nQ(ℓ)H

p,n ∈ CJ×J , (18)

than the original M ×M matrix Cp,n. The criterion function
is

P
RD(ℓ)
MUS (µ, p, n) =

1∥∥∥a(ℓ)
µ (µ)HE(ℓ)

p,n

∥∥∥ , (19)

where E(ℓ)
p,n is obtained from C(ℓ)

p,n in the same way Ep,n is
obtained from Cp,n in the uniform sampling method and a(ℓ)

µ

is obtained from aµ by selecting the elements according to the
same mapping ℓ.

C. Detection of Targets on the RD-HR map

An RD-HR map can be considered as a 2D image with
its elements as the pixels. Targets are detected by finding the
peaks in this map by adapted version of the detection algorithm
proposed in [12]. However, to improve the performance, the
map should first be filtered/smoothed to remove some of the
interference.

It was found that the peaks of real targets have to span
multiple pixels. Therefore, single-pixel peaks are false alarms
and should be removed. To do this we apply the Median filter
from the field of image processing. It is a kind of a nonlinear
filter which selects a given pixel and its eight surrounding
pixels and calculates their median as its output at the given
pixel position. In other words, for a given map P ∈ RMP×PP ,
such as

[
P

RD(ℓ)

MUS

]
or

[
P

RD
MUS

]
, where P represents arithmetic

mean of criterion function at all antennas, we select a 3 × 3
submatrix M(i, j) centered at (i, j) as

M(i, j) = [P]i−1:i+1,j−1:j+1 (∀i, j) , (20)

where each edge of the map is padded with zeros, or more
formally, [P]i,j = 0, for all i, j where i ∈ {0,MP + 1} or
j ∈ {0, PP + 1}. MP and PP are lengths of RD-HR map by
the Doppler and range dimension, respectively. Then the sub-
matrix is rearranged into a vector, m(i, j) = vec {M(i, j)} ∈
R9×1, the vector is sorted which produces the vector ms(i, j),
and the resulting pixel is [PF]i,j = [ms(i, j)]5.

The second step is to apply a 2D linear FIR (Finite Impulse
Response) filter to the map PF to obtain PFF. Its impulse
response (or kernel) can be thought of as a 7× 7 matrix and
is given by

κ(i, j) =
1

σ2
exp

(
− i

2 + j2

2σ2

)
; (∀i, j ∈ {−3,−2, . . . , 3}) .

(21)
The result is the convolution

[PFF]i,j =

3∑
ζ=−3

3∑
ξ=−3

κ(ζ, ξ) [PF]i−ζ,j−ξ , (22)

where the edges of the map PF are appropriately
padded with zeros, i.e., [PF]i,j = 0, for all i, j
where i ∈ {−2,−1, 0,MP + 1,MP + 2,MP + 3} or j ∈
{−2,−1, 0, PP + 1, PP + 2, PP + 3}. Kernels of different
sizes, such as 9× 9, 5× 5, or 3× 3, can be used instead, but
filtering with large kernels can be computationally demanding.

The next step after the filtering is to find peaks that exceed a
chosen threshold γ. It is not a trivial task to choose a value for
the threshold, since a lower value would improve the detection
probability, but also increase the probability of false alarm.
Also the signal from targets that are further away are usually
weaker. Therefore, an adaptive threshold should be used.

D. Azimuth estimation for targets detected on the RD-HR map

After the detection of the peaks in the RD-HR map is per-
formed, for each detected target, the same type of the criterion
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function is calculated, but along the antenna dimension, to
estimate the azimuth (angle of arrival). This method, with
a 2D search followed by 1D search instances (one for each
detection), has a much lower numerical complexity than the
joint 3D search over the range-Doppler-azimuth domain. The
steering vector in this case is

aθ(θ) =
[
1, e−jν , . . . , e−jν(N−1)

]⊤
, (23)

for a ULA, where ν = 2πfcd sin θ/c, θ is the azimuth, and d
is the distance between adjacent antennas.

If the peak of the q-th detected target is at (µq, pq), then let
ql,pq,n be the l-th column of Qpq,n.

Doppler effect will be compensated using the vector aµ(µq)
and we get a scalar value as follows:

r
(q)
n,l = aµ(µq)H(ql,pq,n ⊙ w⊤

M ). (24)

Then we form the appropriate matrix

R(q) =
[
r
(q)
n,l

]
∈ CN×L. (25)

In order for the detection to be better, we average the
L covariance matrices and get one and continue with the
algorithm for azimuth detection:

C(q)
A =

1

L
R(q)R(q)H

∈ CN×N . (26)

The criterion function for the azimuth is

PA
MUS(θ, q) =

1∥∥∥aH
θ (θ)E

(q)
∥∥∥ , (27)

where E(q) is the noise subspace matrix of C(q)
A .

The final estimate of the azimuth is determined by

θ̂(q) = argmax
θ

∣∣PA
MUS(θ, q)

∣∣ . (28)

IV. EXPERIMENTAL RESULTS

The results presented in this section are based on the
measured radar data, and their verification was made using
Automatic Identification System data (AIS). A set of real
signals (raw data) acquired on April 19, 2020 from the Over
the Horizon Radar (OTHR) located on IBL location, Nigeria,
in a time interval of 5 hours was used for testing.

The values P = 1536 and N = 16 are predefined. The
first step in the proposed algorithm is to form an RD-HR
map. We used the uniform sampling method. Here, we can see
properties of range-Doppler maps and their main advantages
and differences. The RD-HR map was calculated for Doppler
frequencies from −0.4804 Hz to +0.4804 Hz to include the
frequencies of ships of interest, as well as Bragg’s lines. This
range can be set arbitrarily. The range resolution was 375
meters.

RD-HR maps are formed for each antenna individually and
independently. Target detection is performed on an averaged
RD-HR map. In the second step, the azimuth is estimated using

a high-resolution MUSIC-type algorithm, that is executed for
each detection in the RD-HR map. Because of that, numerical
complexity and the algorithm execution time are reduced.
Angle resolution was chosen to be 0.2 degrees, and it is a much
better resolution then the resolution used in many algorithms
which are currently in use (typically 1 degree). Fig. 1 shows
the complete detection process.

Fig. 1. Detection of vessel using the proposed algorithm: Detections in RD-
HR map (left), Azimuth estimation for the selected vessel detected in RD-HR
map (right)

As mentioned earlier, in a time interval of approximately 5
hours, we want to detect vessels using the proposed algorithm,
and then compare the results with AIS data. Because of that,
we made an experiment with 10 randomly selected vessels
and monitored the detections throughout the time interval. The
complete AIS data in a time interval of approximately 5 hours
is plotted in Fig. 2a).

Fig. 2. a) The complete AIS data in a time interval of approximately 5
hours and randomly selected 10 vessels with their MMSI (Maritime Mobile
Service Identity) identifiers and 5 stationary located groups of vessels with G
identifiers b) A contour formed around the AIS data.

First, a contour is formed around the AIS data, where the
width of the contour is equal to the size of the initial resolution
cell of 1.5 km. Fig. 2b) illustrates the forming of the criterion
contour.

Then the criterion was made so that the detections and AIS
data are monitored for one hour, hour by hour. According to
this criterion, if the detection is within the contour we will
consider that a true detection and not a false alarm.

It can be noticed that in all cases the detections match
the AIS data very well, and in the next step an accuracy
analysis will be made depending on the selected algorithm

915



parameters (K and γ). Since we observe detections hour by
hour, Fig. 3 shows an example of the appearance of detections
on a geographic map from 17 pm to 18 pm for different values
of algorithm parameters. Graphs of this type are very useful
and can be used to monitor changes by the hour, for example
if there is a change in climatic conditions, or if there is a
change from day to night, etc.

Fig. 3. The display of all vessel detections in a time interval of 1 hour (17-18
pm) for different detection parameters of the proposed algorithm: a) K = 5
and γ = 0.2 b) K = 5 and γ = 0.1 c) K = 10 and γ = 0.2 d) K = 10
and γ = 0.1

In the following analysis, the results of the detection of
selected vessels will be presented in order to see the impact
of certain parameters.

Fig. 4. The display of all detections of the vessel with MMSI=636014619
in a time interval of 1 hour (18-19h) for different detection parameters of the
proposed algorithm: a) K = 5 and γ = 0.2 b) K = 5 and γ = 0.1 c)
K = 10 and γ = 0.2 d) K = 10 and γ = 0.1

Fig. 4 shows detections for a vessel with MMSI=636014619
in a time interval of 1 hour (18-19h) for different detection pa-
rameters of the proposed algorithm. Tracks can be clearly seen
and detections successfully follow the AIS data. The highest
number of detections is in the case when the model number
is higher and the detection threshold is lower. This certainly
increases the detectability of vessels, but also increases the
number of false alarms

The best performance is 76.67 % for chosen algorithm
parameters K=10 and threshold 0.1. This clearly shows that the
order of the model must be higher and the detection threshold
lower in order for this percentage to be higher.

TABLE I
THE RATIO OF TOTAL NUMBER OF DETECTIONS AND NUMBER OF

DETECTIONS WITHIN CONTOURS IN THE TIME INTERVAL OF 5 HOURS

Algorithm parameters In-contour Non-contour Ratio
K = 5, γ = 0.1 7547 43186 6.7223
K = 5, γ = 0.2 6163 12732 3.0658
K = 10, γ = 0.1 10060 119044 12.833
K = 10, γ = 0.2 7610 44498 6.8473

An important parameter can be the ratio of true detections
and total number of detections, as shown in Table I, and it is

desirable that this number be as small as possible so that there
are not too many false alarms.

V. CONCLUSIONS

In this paper, we presented new developed algorithm for
primary signal processing in HFSWR and we discussed its
properties. Based on the experimental results, the assessment
of vessel detectability was made. We achieved great detectabil-
ity in the selected time interval. The contributions are a high-
resolution method for estimating the RD-HR map (a uniform
and a computationally more efficient non-uniform variant), and
the compensation of the Doppler shift before high-resolution
azimuth estimation.The detection algorithm comes from the
field of Image processing and it is, due to the kernel function,
more convenient to use in the application of high-resolution
methods than the classic CFAR, which is more suitable for
use in FFT RDA map estimation.
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