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Abstract—In the context of early breast tumor characteri-
zation, combining electromagnetic (EM) and ultrasound (US)
modalities is of interest, since both non-ionizing and low-cost,
and harboring complementary resolution features. Here, a new
Convolutional Neural Network (CNN) structure is proposed,
denoted as Structurally-Aware Complex Cascaded Neural Net-
work (SACC-CNN). It consists of two parts, the Structurally-
Aware Reconstruction Net (SARNet) and the Structurally-Aware
Classification Net (SACNet). SACNet outputs the tissue type map
which is then fed to the SARNet, which reconstructs the EM and
US parameters. These two parts can be seen as two independent
modules. A physics-guided loss function is implemented in the
SARNet network to enhance structural similarity. Main features
of the approaches, illustrated by simulation, are described.

Index Terms—breast imaging, electromagnetics, ultrasound,
data fusion, cascaded convolutional neural networks

I. INTRODUCTION

Breast tumors are most common and their detection is
critical at early stage [1]. Hence, developing technologies to
image a small tumor at low cost and low risk is an important
issue. Currently, X-ray mammography is the gold standard
for this detection. Despite of high-resolution of the result, it
has a number of limitations including low sensitivity, ionizing
radiation, discomfort from breast compression, and detection
quite affected by breast density. Fusion of complementary
multimodality data has been investigated by three of the
authors of this contribution [2], and it can be achieved by
successive imaging with one modality used as prior. Usually
structure information, like tissue interface or region, can be
extracted from a high-resolution image. Such information
can be used as regularization term to guide inversion with
another modality, e.g., [3]–[5]. Joint inversion is another way
to fuse data where those are inverted simultaneously. Structural

similarity can be employed also to combine the parameters of
different modalities in the inversion procedure [6].

Convolutional neural networks (CNN) may be a good way
forward. As an example, among many, in [7], a CNN structure
is designed to use the measured fields as the input and predict
the scatterer map directly. State-of-the-art networks for tumor
detection and/or breast image reconstruction include the U-
Net and some of its extensions as developed in [8] and also
Artifical Neural Networks (ANN) as shown in [9]. Such a type
of methods can provide reconstruction results in real time yet
gains little from the physical knowledge available. To build
up neural networks so as they benefit from the physics of the
problem at hand is increasingly investigated. In this context,
several works taking place in a different physical framework
have been on physics-inspired neural networks (PINN). Efforts
have mainly focused on the design of a physical framework
that can be translated in different ways. In breast imaging, one
has to reconstruct the image of the breast and first and foremost
classify its components as tissues with/without tumor.

Previous works have illustrated different approaches for
tackling such a problem, some with deep learning. To our
knowledge, none of the networks have been inspired/guided
by the physics of this same problem though clearly beneficial
to the quality of reconstruction and/or classification. In the
present contribution one is particularly interested in the accu-
racy of the breast image and especially in structural similarity
between image of the breast and ground truth.

Indeed, improvement of the structural similarity between
breast image and ground truth should indicate an improvement
of the quality of the image with respect to the existing inner
structures of the breast as well as an improvement concerning
the reliability of its physics. So, the neural network must be
set up in order to favor a reconstruction maximizing the struc-
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tural similarity of the image obtained. Starting from a multi-
task neural network developed previously, two approaches to
enhance the aforementioned physical meaning are proposed.
The network thus developed is a cascaded multi-task physics-
influenced neural network composed of a main neural network
divided into two sub-CNN.

As focused onto fusion of electromagnetic (EM) and ultra-
sound (US) data, a double-stream complex cascaded convo-
lutional neural network framework with structural awareness
is proposed herein. In the numerical experiments, a pending
breast —in contrast with the demanding compressed breast
of X-ray mammography— immersed within an unbounded
coupling medium is assumed.

The contribution is organized as follows. In Section II the
modeling is presented. In Section III, the structure of the
network is sketched. In Section IV numerical experiments on
breast phantoms are proposed. The conclusion is Section V.
Notice that recent works on breast imaging and data fusion by
the co-workers as mentioned before [10] have been illustrated
on phantoms and datasets like those of now, yet going to
tailored CNN stands in contrast to these earlier investigations.

II. ELECTROMAGNETIC AND ULTRASOUND MODELING

A two-dimensional geometry is considered, fluid-like mate-
rials supporting only compressional waves in the US case,
while the EM case is concerned only with Transverse-
Magnetic polarization. Time-harmonic waves are assumed
with time dependence exp(−iωt) for both US and EM. The
breast is located within a domain of interest (DoI) D. The
known background medium is of complex relative permit-
tivity ϵb, permeability µb, and, correspondingly, wavenumber
kem
b = ω

√
ϵ0ϵbµb in EM, speed of sound cb, attenuation αb,

and wavenumber kac
b = ω/cb + iαb in US. Permeability and

density are constant everywhere. The spatial distributions of
complex relative permittivity ϵr(r) = ϵ′r(r) + iϵ′′r (r), sound
speed c(r), and attenuation α(r) are the unknowns. For each
modality, Ni probes are located at r′v , v = 1, 2, . . . , Ni on a
circle S, as sketched in Fig. 1. Each one illuminates the DoI
and scattered fields are collected by all.
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Fig. 1: Sketch of configuration.

To work with the model numerically, D is discretized
into M = H × W small squared pixels centered at rm,
m = 1, 2, . . . ,M , the size of which is to differ betwen the

direct problem (acquiring data) and the inverse one (probing
the breast). US and EM contrasts are defined as

χac(r) =
(kac(r))2 − (kac

b )
2

(kac
b )

2
, (1)

χem(r) =
(kem(r))2 − (kem

b )2

(kem
b )2

, (2)

and the contrast source for the vth incidence as

Jv(r) = χ(r)F t
v(r), (3)

F pressure field P or electric field E. Superscript "t" denotes
total field. Discretized source-type integral equations (i.e., ob-
servation and state equations) involving the free-space Green
function can be derived using a standard pulse-basis point-
matching Method of Moments, those detailed in [11].

III. CNN SCHEME

The main task is to reinforce the structural similarity of the
image, so it is of primary interest to compare first a specialized
non-cascaded CNN structure with multi-stream input and a
multi-task learning strategy (CNN-MM) with its cascaded
version (SACC-CNN) which takes more into account the
morphological structure of the object based on segmentation,
then to define a physics-guided cost function network (PG-
SACC-CNN) guiding to a better structural similarity (and thus
to more realistic physics).

A. CNN structure

As indicated, the CNN-MM structure is inspired by a two-
stream CNN proposed in [12]. In the present work, EM data at
a single frequency and US data at two frequencies are used.
To introduce physical knowledge, the input of the proposed
network is chosen as contrast-source and field quantities ω
and f inside the DoI obtained from backpropagation as

ωv = G
H

s F
s

v, f
s

v = Gdωv, (4)

where G
H

s is the conjugate transpose of Gs, a denoting
a vector and a a matrix. Notice that in back-propagation
methods, a complex parameter is used in (4) to minimize the
quadratic error in the scattered field, here this normalised EM-
specific retro-projection parameter is simply set to 1.

For each modality at given frequency, ωv and fv are
reshaped as H ×W images and will allow to limit the long
correlation at the data level and also allow the network to be
efficient with less layers or with smaller kernel sizes. ℜ{ωv},
ℑ{ωv}, ℜ{fv} and ℑ{fv} obtained from all incidences are
separated in imaginary part input and real part input with
size of H × W × 4Ni. To achieve the reconstruction, the
SARNet network has an output of size H × W × 4 to
predict EM parameters ϵ′r and ϵ′′r , and US parameters c and α
simultaneously.

Apart from the regression task, an auxiliary classifier (i.e.,
SACNet) is introduced to provide a segmentation image.
A softmax classifier yields the probability distribution over
predicted output classes (tissue types and background) for each
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pixel and the said pixel is classified into the class with highest
score. This segmentation task is quite relevant to the regression
task. Such multi-task learning can help training the network
and improve the generalization capability.

Another interest adds to, since, still with the objective
of feeding the network with physical knowledge, the clas-
sification output could inform the reconstruction and thus
potentially increase its quality. Such an architecture is the so-
called cascaded architecture sketched in Alg. 1, Alg. 2 and
Fig.2. The resulting Cascaded CNN is composed of two main
blocks, one being the first CNN in charge of the classification
whose output is directly input to the second one, in charge of
the reconstruction. Their respective architectures are directly
inspired from [2].

Algorithm 1 Sub-network SACNet.
1) for m = 1 to nb_iters do

a) 2 input channels: Real and Imaginary parts input.
for i = 1 to nb_input_channels do

xi ← Conv2D(xi, y, kernel_size = (1, 1))
xi ← BatchNormalization()(xi)
xi ← LeakyReLU(α = 0.1)(xi)

end for
b) Repeat step a).
c) x← Concatenate([x1,x2])

x← Conv2D(x, y, kernel_size = (3, 3))
d) Creation of J = 4 shortcuts sj , j = 1, 2, ..., J

for j = 1 to J do
sj = x
x← BatchNormalization()(x)
x← LeakyReLU(α = 0.1)(x)
x← Conv2D(x, y, kernel_size = (3, 3))
Repeating once these 3 steps.
x← Add()([sj ,x])

end for
e) x← Conv2D(x, y, kernel_size = (3, 3))

x← LeakyReLU(α = 0.1)(x)

end for
2) Seg. output← Conv2D(x, y, kernel_size = (3, 3), softmax).

Algorithm 2 Sub-network SARNet.
1) for m = 1 to nb_iters do

a) 3 input channels: Real and Imaginary part inputs + Seg. output.
for i = 1 to nb_input_channels do

xi ← Conv2D(xi, y, kernel_size = (1, 1))
xi ← BatchNormalization()(xi)
xi ← LeakyReLU(α = 0.1)(xi)

end for
b) Repeat step a).
c) x← Concatenate([x1,x2,x3])

x← Conv2D(x, y, kernelsize = (3, 3))
d) Creation of J = 4 shortcuts sj , j = 1, 2, ..., J

for j = 1 to J do
sj = x
x← BatchNormalization()(x)
x← LeakyReLU(α = 0.1)(x)
x← Conv2D(x, y, kernel_size = (3, 3))
Repeating once these 3 steps.
x← Add()([sj ,x])

end for
e) x← Conv2D(x, y, kernel_size = (3, 3))

x← LeakyReLU(α = 0.1)(x)
f) Creation of J = 1 shortcut s1
end for

2) Reg. output← Conv2D(x, y, kernel_size = (3, 3), sigmoid).

B. Loss function
The networks considered, i.e., CNN-MM and (Physics-

Guided) SACC-CNN, are using different loss functions. The

Imaginary part input

Real part input
SACNet

SARNet Regression output

Segmentation output

Fig. 2: Sketch of architecture of network SACC-CNN.

loss function for the regression task in CNN-MM is chosen as
the mean of the absolute error and of the squared error as

Lreg =
1

2NHW

∑
n

∑
h,w

(
|ˆ̃ζ

n

h,w − ζ̃nh,w|+ |ˆ̃ζ
n

h,w − ζ̃nh,w|2
)
(5)

for parameter ζ, where ˆ̃
ζ
n

h,w is the predicted value of the
nth sample located at (h,w) and ζ̃nh,w is the ground truth.
N is the number of samples in a training batch. For the
SARNet, the same loss function was first used. However, as
considered in [13], a loss function can be tuned and used as
a physics-guideline for the learning task of a network. In this
precise context, it would be of particular interest to train the
SARNet such that it focuses on structural similarity between
the training set and their ground truths in order to improve the
definition of the reconstructed (internal and external) contours.

To that extent, a SSIM (Structural Similarity Index Metric)
metric is implemented in the proposed physics-guided loss
function to compare the structural similarity of the full image
and ground truth (respectively denoted as x and y), with

SSIM(x, y) =
(2µxµy + C1) + (2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(6)

in which µx and µy are local means of the images, σx

and σy are local standard deviations, σxy is local cross-
covariance, and C1 and C2 are regularization constants. Other
implementations, by example a smaller-sized SSIM sliding
window, could hypothetically give a better granularity to the
structural similarity. Accordingly, this knowledge leads to the
new loss function

Lregnew = Lreg + β(1− SSIM(x, y)), (7)

β being a regularization term tuned at each epoch through a
bandit-based Hyperband algorithm as introduced in [14].This
loss function will hence prioritize more the structural similarity
than the quadratic error.

In the segmentation task, each pixel is classified into a tissue
type or background medium. Softmax classifier is used for this
multi-class classification problem. The loss function is cross-
entropy as

Lseg = − 1

NHW

∑
n

∑
h,w

∑
k

tnh,w;klog(s
n
h,w;k), (8)

letting tnh,w;k and snh,w;k the ground truth and predicted prob-
ability of the pixel for Class k.
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IV. NUMERICAL SIMULATIONS

A. Measurement setup and dataset

The networks are trained and tested with realistic breast
phantoms available in the on-line UWCEM repository [15].
Breast composition varies from person to person and the
phantoms in the repository are classified into four classes
according to radiographic density: almost entirely fatty, scat-
tered fibroglandular tissue, heterogeneously dense breast, and
extremely dense tissue.

Since dense breasts face a higher risk of cancers [16], breast
phantoms categorized into the last two classes, denoted as
Classes 3 and 4, are used to generate the dataset. Those are
tumor-free, so an artificial tumor is added into the glandular
part with random location. Its size is set randomly with a
radius between 6mm and 8mm to add variability.

In the simulations, for the EM case, 20 antennas are evenly
set on a circle of radius 0.1m, working as ideal sources and
receivers simultaneously at a single 1GHz frequency. For the
US case, 64 transducers operate at 100 and 200 kHz on a
0.12 m-radius circle. The DoI for simulation has a resolution
of 0.5mm, as given in the repository, involving 300 × 300
pixels. Scattered fields are obtained by solving the forward
problem. Corresponding calculations are run in Matlab. An
example of input of the network, ℜ{ω}, ℑ{ω}, ℜ{f}, ℑ{f}
as back-propagated is in Fig. 3, emphasizing the absence of
direct interpretation of these images in terms of contrasts in
particular.
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Fig. 3: Input images (produced by the first antenna/transducer)
of a sample. Top to bottom: EM case, US case at 100 kHz,
US case at 200 kHz. Left to right: ℜ{ω}, ℑ{ω}, ℜ{f}, ℑ{f}.

To enlarge the dataset, data augmentation is employed.
Different levels of noise are added to the scattered fields from
15 dB to 30 dB above the average SNR. The DoI is discretized
into 75 × 75 pixels to compute the input data ω and f with
equations (4). Tissue type image and distribution of EM and
US parameters with same discretization are used as output.
Rotation and flipping are operated on both input and output
of a sample to generate new data. The whole data set contains

2920 samples, 1536 samples are from Class 3 and 1384 from
Class 4, subsequently divided into a 2336 samples training set
and a 584 samples test set.

The ranges to normalize the parameters are [1, 70], [0, 30],
[1450, 1650] and [0, 5] for ϵ′r, ϵ′′r , c and α, respectively. Here,
attenuation at 200 kHz is predicted. In the segmentation task,
pixels are classified into six categories according the tissue
type given in the repository, namely background medium, skin,
fat, transitional, glandular and tumorous tissue.

B. Implementation details

All networks are implemented in Keras with Tensorflow
backend, run on a laptop with NVIDIA CPU Quadro P620.
The networks are trained with ADAM solver with an initial
learning rate of 5 10−4 which decays with a factor of 0.15
each 10 epochs. Batch size is 10, and 60 epochs are run total.

C. Quantitative assessment

The network performance is assessed by two metrics for dif-
ferent tasks. For segmentation, Intersection-over-Union (IoU)
for Class i is calculated as

IoUi =
1

N

∑
n

pnii + 1∑K
k=1 p

n
ik +

∑K
k=1 p

n
ki − pnii + 1

, (9)

where pnik is the number of pixels in test sample n labeled as
Class i but predicted into Class k, and K is the number of
classes. Note that, in the calculation, a smoothness number
of 1 is used. For regression, the relative error is used for
evaluation. Given the output of the network ˆ̃

ζ and the ranges
for normalization, the predicted parameter value ζ̂ can be
calculated. The relative error between ζ̂ and the ground truth
ζ is defined as

Err =
1

N

∑
n

√√√√∑
w,h |ζ̂nw,h − ζnw,h|2∑

w,h |ζnw,h|2
. (10)

Quantitative assessment, IoU, Err and SSIM on the test set
are given in Table I, II and III, respectively. To provide better
comparisons, a CNN inspired from [17] called Res-Net 50,
based on a U-Net model using skip-connections, has also been
implemented, since it has been yielding good results for image
reconstruction.

TABLE I: IoU of different networks on test set.

Network Medium Skin Fat Transition Gland Tumor Average

Res-Net 0.997 0.836 0.863 0.422 0.678 0.709 0.753
CNN-MM 0.995 0.834 0.860 0.419 0.677 0.715 0.751

SACC-CNN 0.997 0.836 0.862 0.420 0.678 0.717 0.753
PG-SACC-CNN 0.999 0.838 0.866 0.422 0.680 0.718 0.755

From the quantitative assessment, it can be seen that SAC-
Cascaded CNNs to reconstruct both tissue type and parameter
value works best on the test set. Physics-Guided SACC-CNN
also slightly outperforms SACC-CNN in both classification
and reconstruction. One should note that the SSIM results
shown here are mean-SSIM from the entire test set and include
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TABLE II: Err of different networks on test set.

Network ϵ′r ϵ′′r c α

Res-Net 0.213 0.195 0.004 0.134
CNN-MM 0.260 0.265 0.005 0.135

SACC-CNN 0.253 0.257 0.004 0.133
PG-SACC-CNN 0.156 0.159 0.003 0.121

TABLE III: Structural Similarity of the different images ob-
tained from networks on test set.

Network mean-SSIM lowest SSIM highest SSIM

Res-Net 0.796 0.504 0.892
CNN-MM 0.723 0.512 0.875

SACC-CNN 0.771 0.510 0.882
PG-SACC-CNN 0.810 0.511 0.903

high variations with at least one outlier corresponding to the
lowest SSIM reported in Table III. The SSIM difference can
be spotted in Fig. 4, where one can see that the contours of the
reconstructed parameter ϵ′r are continuous for the PG-SACC-
CNN whereas they are not for the other ones.
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Fig. 4: Ground truth (a) and imaging with (b) CNN-MM, (c)
ResNet 50, (d) SACC-CNN, (e) PG-SACC-CNN.

It can be concluded that a SACC-CNN performs only
slightly better on this dataset than a CNN-MM, while a
Physics-Guided SACC-CNN moderately outperforms both of
them and performs better than the Res-Net for the reconstruc-
tion part, while leading to slightly better results, yet not so
significantly, for the classification part.

Meanwhile, one can achieve real-time reconstruction. In
average, with Fast Fourier Transform implemented, the input
data of the network can be computed in 0.5681 seconds and
it takes 0.2718 seconds to get the prediction results of one
sample on Intel Core i7 10875H CPU (2.30 GHz).

V. CONCLUSION

Aiming at real-time breast imaging, a Physics Guided SAC-
Cascaded CNN structure has been proposed to combine EM
and US data. Apart from the regression task to predict param-
eter values, an auxiliary classifier is used to classify each pixel

to achieve model segmentation. The cascaded architecture
improves the structural similarity of the image provided, while
further implementing a physics-guided loss function reduces
the error on the predicted parameter values and enhances the
structural similarity of the image.

Many physics-guided loss functions for inverse scattering
problems can however be imagined, and investigation of their
complementarity in order to create a stronger physics-guided
loss function is in need.
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