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Abstract—Large scale connectome data sets based on sophis-
ticated fMRI recordings are becoming prominent in the advent
of big-data-in-neuroscience era. In this work, we present a fast
and efficient connectome analysis method for feature extraction
using randomly generated data over structural connectomes. The
proposed approach is based on recursive filtering of the graph
data and zero-crossing counting over the connectomes (graphs).
The simplicity of the proposed method, namely simple Higher
Order Crossings over graph sequence (sHOCg), and its robust
mathematical grounds, allow to discriminate subjects based on
their structural wiring with high accuracy and dramatically
faster estimation times (over 200 times faster) compared to state
of the art graph kernel approaches.

Index Terms—graph filtering, zero crossings, large scale con-
nectome data set, graph classification

I. INTRODUCTION

As large-scale neuroscience data collection initiatives grow,
such as the Human Connectome Project (HCP) [1], the Ado-
lescent Brain and Cognitive Development (ABCD) study [2],
or the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
[3], there appears a great need for efficient and fast methods
for the corresponding processing and analysis [4]. In particular,
the contemporary extensive attempts for human brain mapping
and the associated fMRI-based connectome data have put
forward the need for graph analysis methods that are fast and
efficient in various tasks.

In this work, we present the implementation of the sim-
ple Higher Order Crossings analysis over graphs (sHOGg)
method [5] for the feature extraction task while classifying
large scale, braingraph data sets. More specifically, we use
an augmented data set of human connectomes [6] and extract
features using sHOGg and a state of the art Shortest Path
kernel approach [7] to extract features. Two classification
methods are used to classify connectomes originating from
different subjects (classes), namely the k-Nearest Neighbor
(kNN) [8], and the Binary Decision Tree (BDT) [9] classifiers.
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The speed and the performance of the two distinct approaches
are investigated.

The paper is structured as follows. The next section presents
the materials and methods of this work. In particular the
augmented connectome data set is briefly described whereas
the proposed sHOGg approach is thoroughly presented.
Moreover, the Shortest Path Kernel approach and the clas-
sifiers along with certain implementation issues are described.
Section III presents the results of the application of the
aforementioned methods and discusses certain aspects of the
analysis. Finally section IV concludes the paper.

II. MATERIALS AND METHODS

A. Human Connectome data set

The data set used in this work was presented in [6],
[10] and is publicly available in https://braingraph.org/cms/
download-pit-group-connectomes/. In the released contribu-
tion, a braingraph (connectome) set, computed from the 1200
Subjects Data Release of the Human Connectome Project
[1]. The pre-processed 3T fusion data were used whereas the
CMTK workflow [20] was utilized in the graph computation.
For each subject, the segmentation and the parcellation steps
were applied only once, whereas the probabilistic tractography
part of the workflow was applied 10 times. The parcellation
scheme was the Lausanne2008 atlas.

The connectome data set was augmented via a Newtonian
Blurring method [6] as a modification of the Basic Averaging
Strategy for braingraphs. In particular, for all subjects, the
tractography step of the processing, which determine the
axonal fibers, connecting the ROIs of the brain, is computed
10 times. Next, for each subject and each resolution (i.e., 83,
129, 234, 463, and 1015 nodes in the graph), the braingraph
(connectome) of the subject is computed, and ten interim
weights were assigned for each edge. The edges that appeared
with 0 fibers in at least one of the 10 tractography runs,
are deleted. For each subject and each resolution, 7 graphs
from the 10 repeatedly computed graphs are chosen in every
possible way (i.e.,

(
10
7

)
= 120). Subsequently, for each edge,

the maximum and minimum edge-weights out of the 7 are
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deleted, and the remaining five weights (number of fibers) are
averaged (by simple arithmetic mean). This value is assigned
to the edge as its final weight (these weights are also the ones
used in this work). For more information about the data set
construction the reader is encouraged to consult [6], [10].

B. Higher Order Crossings on Graphs

Higher order Crossings (HOC) analysis over graphs [5] is
the sequential count of zero-crossings of a repeatedly filtered
graph signal. HOC analysis of naive signals (not graph signals)
have been shown to be an efficient method of feature extraction
for classification tasks [11]–[13].

When a specific sequence of graph filters is applied to a
particular signal, the corresponding sequence of zero-crossing
counts is obtained, resulting in the so-called HOCg sequence
[5]. Different HOCg sequences can be constructed by appro-
priate filter design.

Let G = (V,W) be a graph with V = (v1, ..., vn) being
the set of nodes of the graph and W the weighted adjacency
matrix of the graph. If the graph is an undirected graph then
Wi,j = Wj,i. Given a graph G, we write a graph signal as a
vector:

x = [x1, ..., xn]
T ∈ IRn (1)

where each element xi is associated with vi of the graph G =
(V,W).

To define the zero-crossings count for a graph signal, let the
graph signal of (1) be a zero-mean graph signal. The associated
clipped series are defined as:

yi =

{
1 xi ≥ 0

0 xi < 0
(2)

and the indicator function ζi for node i is simply the zero-
crossings encountered in that specific node of the graph, i.e.,:

ζi =
∑
j∈Ni

(yi − yj)
2 (3)

where Ni is the set of nodes that are neighbors with the node
i, i.e., Wi,j > 0. Thus, ζi is the number of zero-crossings that
occur between node i and its neighbors. As a consequence, the
total number of zero-crossings Z0

g of the initial graph signal
in (1) within an undirected graph is:

Z0
g =

n∑
i=1

ζi =
tr(AY)

2
(4)

where tr(.) is the trace of a matrix, A is the adjacency matrix
of the graph G, i.e., Ai,j = 1 iff Wi,j > 0 and Ai,j =
0 iff Wi,j = 0, and Y is the matrix where Yi,j = (yi − yj)

2

(see [5] for zero-crossing estimation on directed graphs).
Now let Lg be a high pass filter over the graph G. For

a filtered graph signal x̂ = Lg{x} we can estimate Z1
g , for

L2
g{x} we estimate Z2

g and so on so forth in order to obtain
the HOCg sequence:

Zg = [Z0
g , . . . , Z

k
g ] (5)

where k is the maximum order of the sequence.
For the normalized HOCg sequence, we divide the Zg

sequence, element-wise, by the maximum number of zero-
crossings, Zmax

g , that can be detected for the complete graph
G [5], thus,

Zmax
g =


n2

4 , n is even

(n−1)(n+1)
4 , n is odd.

(6)

The normalized HOCg sequence is estimated as:

Z̄g = [Z̄0
g , . . . , Z̄

k
g ] (7)

where Z̄i
g =

Zi
g

Zmax
g

. The normalized HOCg sequence is the
feature vector that is used for the classification of the brain
connectomes in this work.

1) Filter Design: In this work we used graph filter of the
form of polynomials on the weighted adjacency matrix W,
i.e.,:

h(W) = h0I+ h1W + ...+ hdW
d, (8)

where d is the degree of the polynomial. The output of the
filter defined by (8) is the graph signal:

x̂ = h(W)x. (9)

There are various approaches to design graph filters of the
form (8) (see for example [5]). Nevertheless in this work we
will adopt the simpler form, where h0 = 1, h1 = −1 and the
rest parameters hi, i = 2, ..., d are zero. With this adoption we
introduce the simple HOCg sequence, i.e., sHOCg sequence
which is merely the sequential weighted subtraction of each
value in a vertex with its neighbors. This also resembles the
simple HOC sequence introduced in [14] as the simplest form
of high pass filter for ordinary signals (not graph signals).

C. Shortest path graph kernel

In order to compare the proposed approach for feature
extraction based on sHOCg sequence we will also use the
algorithm for Shortest Path graph kernel (SPK) by Borg-
wardt and Kriegel [7] that counts pairs of labeled nodes
with identical shortest path length. The Matlab implemen-
tation that we used for this algorithm is publicly avail-
able at https://bsse.ethz.ch/mlcb/research/machine-learning/
graph-kernels/graph-kernels.html. This approach was adopted
here for comparison based on the fact that it is relatively fast in
comparison with other graph kernels, e.g., Ramon and Gärtner
[15], p-random walk [16] etc., with good performance in terms
of graph classification task [17].

D. Classification

For the classification of the features extracted using the
sHOCg and SPK approaches, two classifiers were used, the
k-Nearest Neighbor (k-NN) classifier and binary decision tree
classifier (BDT). For the k-NN, k was set to 3 neighbors
whereas all parameters for BDT was the default parameters
set by Matlab (all algorithms were written in Matlab 2019b).
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Fig. 1. Mean Z̄i
g (sHOCg) sequence and corresponding standard deviation

with order of the sequence k = 30 for 3 different subjects (blue, red, and
green lines) of the braingraph data set with resolution |V | = 83.

The classification task corresponds to the classification of 50
different subjects (50 classes) in the connectome data set with
120 different connectomes per subject in a 10-fold cross-
validation scheme.

III. RESULTS AND DISCUSSION

For the evaluation of the proposed algorithm and the
comparison with the SPK approach 50 subjects from the
connectome data set were used. In particular, the first 50
subjects from the data set were used for the extraction of
features using sHOCg and SPK for classification of the
subjects based on 120 different braingraphs (connectomes) of
each subject.

In order to extract the sHOCg sequence from the brain-
graphs, 100 random, uniformly distributed in the range [−1 1]
graph signals x were used and the performance of the classifi-
cation of the sHOCg sequences based on these graph signals
were estimated using the two classifiers. Fig. 1 represents the
mean sHOCg sequence and corresponding standard deviation
across 120 braingraphs with resolution |V | = 83 of three
different subjects.

Fig. 2, shows the mean classification accuracy (in the range
[0 1], i.e., 0.5 − >50% accuracy) and the associated standard
deviation within the 100 different random graph signals. As
was expected higher resolutions of the braingraphs lead to
higher classification rates, from 92.66% (|V | = 83) to 98.05%
(|V | = 1015) for the kNN classifier and from 90.56% (|V | =
83) to 96.48% (|V | = 1015) for the BDT classifier. Moreover,
it is noteworthy that the standard deviation decreases as the
resolution of the brain graph increases indicating a more robust
classification with higher connectome resolutions i.e., from
1.94 (|V | = 83) to 0.73 (|V | = 1015) for the kNN classifier

83 129 234 463 1015

0.88

0.9

0.92

0.94

0.96

0.98

1

Fig. 2. Mean classification accuracy rates and corresponding standard
deviation using 100 random graph signals and kNN and BDT classifiers for
different braingraph resolutions, i.e., 83, 129, 234, 463, 1015.

and from 1.74 (|V | = 83) to 0.78 (|V | = 1015) for the BDT
classifier.

It is evident that certain graph signals can lead via the
sHOCg sequence to advanced classification performance.
This is confirmed for both classifiers. The association of the
properties and characteristics of such graph signals with the
properties of the graphs, i.e., subgraph structure, edges etc.
remain to be investigated. Moreover, based on this investiga-
tion novel algorithms for such graph signal construction could
be proposed and optimized in respect with fast and efficient
graph classification. All this aspects will be the objective of
future work.

In order to compare the proposed sHOCg sequence with a
state-of-the-art approach we utilized the SPK method which
was found to be among the fastest approaches and one of the
more efficient within other graph kernel methods [17]. For
the comparison, the graph signal with the best classification
performance with sHOCg was used for each case.

Fig. 3 shows the accuracy rates (in the range [0 1]) using
sHOCg (solid lines) and SPK (dashed lines) with kNN
(blue lines) and BDT (red lines) across different resolutions
of the braingraphs. kNN-SPK method exhibits the highest
classification rate for all resolutions. Nevertheless, it is evident
that classification rates with this method decrease as resolution
increases. In particular, while for |V | = 83 accuracy for kNN-
SPK is 99.97% it decreases to 99.82 for |V | = 1015. On
the contrary, kNN-sHOCg approach leads to high classifi-
cation accuracy rates as the resolution of the connectomes
increases, i.e., from 97.13% for |V | = 83 it goes up to
99.73% for |V | = 1015, only 0.05% less than the kNN-
SPK approach. Based on this aspect, it can be assumed that
higher resolutions of the connectome would lead to even lower
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Fig. 3. Classification accuracy rates for different braingraph resolutions, i.e.,
83, 129, 234, 463, 1015, using sHOCg (solid lines) and SPK (dashed lines)
with kNN (blue lines) and BDT (red lines).

TABLE I
CLASSIFICATION ACCURACY FOR TWO SUBJECT GROUPS (GROUP 1:

1-50, GROUP 2:51:100 FROM THE DATA SET) USING THE GRAPH
SIGNALS WITH THE BEST PERFORMANCE ON GROUP 1 WITH KNN

CLASSIFIER

subject group/|V | 83 129 234 463 1015
group 1 97.13 97.95 98.73 99.63 99.73
group 2 98.43 94.97 97.78 98.72 99.23

accuracies for kNN-SPK and higher ones for kNN-sHOCg

approach. Moreover, it should be stressed out that despite the
fact that we chose the graph signals with the best classification
accuracy for the sHOCg approach, these graph signals was
the outcome of a mere random search and future optimization
of the construction process of the graph signals will reveal new
HOCg construction methodology for even better performance.
In addition, the performance of the BDT-sHOCg and BDT-
SPK approaches seems to be approximately the same with the
BDT-sHOCg approach outperforming the BDT-SPK one in
three out of the five resolutions (see Fig. 3).

We also investigated if the graph signals that lead to high
classification rates with the sHOCg method generalize well.
In order to inspect such a behavior we estimated the classifi-
cation performance of the proposed approach on another 50-
subject group. In particular, whist the graph signals were tested
on the classification performance within the 50 first subjects
of the connectome data set (group 1) we also estimated the
performance on the classification of the subsequent 50 subjects
of the data set (group 2) using the initial graph signals that
led to the best and worst performance on group 1.

Tables I and II show the accuracies for group 1 and group 2
using the graph signals with the best and worst performance on

TABLE II
CLASSIFICATION ACCURACY FOR TWO SUBJECT GROUPS (GROUP 1:

1-50, GROUP 2:51:100 FROM THE DATA SET) USING THE GRAPH
SIGNALS WITH THE WORST PERFORMANCE ON GROUP 1 WITH KNN

CLASSIFIER

subject group/|V | 83 129 234 463 1015
group 1 87.25 89.57 92.98 94.28 96.07
group 2 90.28 91.37 92.75 96.77 97.53

TABLE III
TIME (IN SECONDS) NEEDED TO EXTRACT THE sHOCg AND SPK

FEATURES FOR 120 GRAPHS OF SUBJECT 1.

Method/|V | 83 129 234 463 1015
sHOCg 0.04 0.06 0.16 0.85 4.89

SPK 0.34 1.09 5.12 74.37 1119.68

group 1, respectively, for the kNN classifier. Both for the best
and worst cases (Table I and II, respectively), classification ac-
curacies follow an increasing trend as the resolution increases
as was initially observed for group 1. Moreover, accuracies for
group 2 seem to depend on the efficacy of the corresponding
graph signal to classify subjects in group 1. In particular, graph
signals that tend to perform better in group 1 perform also with
high accuracies for group 2. On the other hand graph signals
that perform poorly on the classification task in group 1,
perform poorly in group 2 as well. From the above it is evident
that graph signals that are used to extract sHOCg sequence are
important for the efficient performance of the classifiers due
to probably inherent properties of the method that favor the
discrimination of the different classes. It is noteworthy, that
in some cases the classification rates of group 2 are higher
than the ones in group 1 enhancing the above mentioned
argument about the discrimination capabilities of the sHOCg

approach. Hence, the extension of the proposed approach to
facilitate, e.g., fMRI-EEG data [18], [19] that would lead to
structure-function coupled features instead of random ones
would further advance the performance of the method. In
general, replacing the random signals with real experimental
data would probably mitigate the issue of defining optimum
graph signals for classification. Finally, it should be stressed
out that despite the fact that Tables I and II present only the
results for kNN classifier, the performance for the two groups
is similar when using the BDT classifier.

So far the classification accuracy rates show that depending
on the classifier and the graph signals used for sHOCg

extraction, the proposed approach exhibits comparable and in
some cases better performance than the SPK approach. Due
to the fact that contemporary connectome data sets include
braingraphs with high resolution which constantly increases,
it is imperative that the feature extraction methodologies to be
not only efficient but also fast. In Table III the times needed
(all times are in seconds, and the analysis was performed in
a desktop with Intel i5-9600K processor with 6 cores and
3.7GHz speed with a 16GB RAM) to extract the feature vec-
tors of the 120 brain graphs from subject 1 in the connectome
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data set are indicatively shown (similar times are needed for
all subjects examined in this work). It is obvious that sHOCg

approach is much faster that the SPK one. It is noteworthy that
the ratios of the times needed to extract the SPK and sHOCg

feature vectors, i.e., time for SPK/time for sHOCg , rapidly
increase as the resolution of the connectome increases. In
particular, while SPK is approximately 8.5 times slower than
sHOCg for |V | = 83, this ratio increases to approximately
229 for |V | = 1015. This is indicative of the superiority of the
sHOCg for the analysis of large scale connectome data sets
as with comparable performance (e.g., 99.82% for kNN-SPK
vs. 99.73% for kNN-sHOCg) sHOCg needs dramatically
less time to be estimated. Taking into account that sHOCg

construction can be further optimized via targeted graph signal
construction, as previously discussed, the proposed method
holds great potential for an efficient and a really fast analysis
method for large scale, high resolution braingraphs [20], [21].

IV. CONCLUSIONS

In this work the sHOCg sequence was introduced and used
for the extraction of features from braingraphs (connectomes)
for their efficient and fast classification. Compared with state-
of-the-art SPK method, sHOCg exhibited comparable, and in
some cases better, performance. On the other hand, the pro-
posed approach needs dramatically less time to be estimated
making it an ideal tool in the arsenal for braingraph analysis
tools for large scale data sets. The computational superiority
of the proposed approach pave the way of feature extraction
of voxel-wise brain graphs of even hundreds of thousands of
nodes. Future work will also deal with optimized sHOCg

sequence construction that would lead to even superior brain-
graph classification performance.
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