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Abstract—Graph Signal Processing is a promising framework
to manipulate brain signals as it allows to encompass the spatial
dependencies between the activity in regions of interest in the
brain. In this work, we are interested in better understanding
what are the graph frequencies that are the most useful to
decode fMRI signals. To this end, we introduce a deep learning
architecture and adapt a pruning methodology to automatically
identify such frequencies. We experiment with various datasets,
architectures and graphs, and show that low graph frequencies
are consistently identified as the most important for fMRI
decoding, with a stronger contribution for the functional graph
over the structural one. We believe that this work provides novel
insights on how graph-based methods can be deployed to increase
fMRI decoding accuracy and interpretability.

Index Terms—graph signal processing, residual networks,
functional magnetic resonance imaging, neural networks pruning

I. INTRODUCTION

The development of Functional Magnetic Resonance Imag-
ing (fMRI) has allowed to observe the brain in vivo and
to address one of the central questions of cognitive neuro-
science: understanding the relation between brain activation
and cognitive functions or experimental conditions. Classical
approaches have relied on forward inference (e.g., identifying
localised effects in the brain corresponding to a change in the
experimental condition) or reverse inference (e.g., inferring
the cognitive function from brain activation patterns, which is
typically done using single subjects linear statistical models).
More recently, it has been suggested that brain decoding
(e.g., predicting an experimental condition from patterns of
brain activation) is a more formal way to perform reverse
inference [1], as it allows to identify brain structures that
are selectively engaged during a specific cognitive task. A
few works have tested large-scale brain decoding using classic
machine learning or deep learning paradigms applied to fMRI
data from different subjects and tasks [2], [3]. Some of
these studies have taken a step forward and tested graph
convolutional networks to decode fMRI brain activity by
also taking in account brain structural [4] or functional [5]
connectivity, exploiting the promising framework of Graph
Signal Processing (GSP).
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GSP is a mathematical framework that aims at extending
classical Fourier analysis to irregular domains represented by
graphs. In particular, notions of graph frequencies, modes, and
associated operators such as convolutions or filtering can then
be defined. In the context of fMRI decoding, the use of GSP-
based methods also brings forward interpretability questions.

In this work, we are interested in better understanding
what are the graph frequencies that are the most useful to
decode fMRI signals. To this end, we introduce a neural
network architecture called spectral ResNet in which graph
frequencies are used to define convolutions. Using a pruning
technique, we dynamically identify which frequencies are the
most useful to decode fMRI signals. We show that these
frequencies are robust to changes in the datasets and the
considered architectures. We perform experiments with both
structural or functional graphs.

II. RELATED WORK

In this document, tensors and matrices are noted in bold
uppercase, and vectors in bold lowercase. We access their
entries using Python-style indexing, where : denotes all entries
along the corresponding dimension. Constants are noted in
uppercase, variables in lowercase, and sets in calligraphic.

GSP generalizes Fourier’s approach to signals evolving on
irregular structures by providing an adapted spectral space
to decompose them in meaningful frequencies [6], [7]. In
this framework, we consider a weighted and undirected graph
G = (V,&,W) with vertices V = {v1,...,vn} of cardinal
V| = N, edges &€ C V x V, and a weighting function
W : € — R. Such a graph can be equivalently represented
by its weights matrix W € RN*N such that W [i,j] =
W ({vi,v;}) if {v;,v;} € € and O otherwise. Additionally,
we note D € RV*N the degrees matrix of G, such that
Di,j] = Z]kV:1W[i, k] if ¢ = j and O otherwise. From
these two matrices, we can compute the normalized Laplacian
matrix L = Iy — D Y2WD~1/2 of G, where Iy is the
identity matrix of dimension NNV. Since L is real and symmetric,
it can be diagonalized as L = UAUT, where U is a matrix
of orthonormal vectors associated with eigenvalues forming
the diagonal matrix A, sorted in increasing order. These
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eigenvalues are analogous to frequencies in Fourier analysis,
and are called graph frequencies.

A signal x € RYN on G is an observation on each of its
vertices. Its Graph Fourier Transform % = GFT(x) = U'x
shows the various contributions of eigenvalues of L in x. Its
inverse x = GFT-}(X) = Ux transforms a graph spectrum
into a graph signal. Following the usual setting of Fourier
Analysis, convolution can be defined as entrywise multiplica-
tion ® in the spectral space. In more details, denote h € RY
a filter, then convolution is obtained as:

x*h = GFT? (GFT(x) ® GFT(h)) . (1)

There are several standard filters in the literature to perform
useful frequency selection (low/high/band-pass and band-stop)
as well as several methods to select them [7]. These methods
are based on the selection of one or more frequency bands
at specific locations in the spectrum. In contrast to these
methods, we propose here a method where selection of (non-
necessarily contiguous) frequencies is performed automatically
while optimizing for a supervised task.

In previous works applying GSP to decode brain activity [4],
[5], the focus has been mainly on increasing generalization ac-
curacy. Here we aim at investigating which graph frequencies
are the most relevant for brain decoding, and compare results
for functional and structural graphs. We also assess the relia-
bility of our results by applying the same analysis to two large
scale datasets and testing different deep learning architectures.
More specifically we address the following questions:

1) Which graph frequencies are the most relevant to predict
the experimental task from corresponding fMRI activa-
tion maps?

2) Are these frequencies consistent for different underly-
ing graphs (functional vs. structural) and deep learning
architectures?

3) Does selecting specific graph frequency bands increase
brain decoding performance?

III. METHODOLOGY

In this work, we aim at exploiting the graph on which
input signals are defined to improve the classification of these
signals and its interpretability in terms of relevant brain spatial
patterns. The core idea of the proposed approach is to select
by a learning process the appropriate graph frequencies within
the signals. Beyond the performance aspect, this also provides
an understandable representation of the signal features that
are used for training a model. To reach this goal, we build a
spectral model around a GSPConv layer, defined below.

A. GSPConv layer

A GSPConv layer is defined using a graph G with N
vertices. It takes as input a matrix X € R *¢n seen as a graph
signal with ¢;, channels and outputs a matrix Z € RN XCout
seen as a graph signal with ¢y, channels. It contains a weight
tensor @ € RV *¢inXcout and its mathematical function is:

GSPConve,, c...(X) =0 (GFT (GFT (X) ® ©)) , (2)

where GFT and GFT-! are applied to each channel indepen-
dently, ¢ is a nonlinear activation function, and ® is such that
(x®0O) [lv C] = 22311 X [lv C/] © [lv , C]‘

In other words, a GSPConv is a natural extension of usual
convolutional layers used in regular 1d or 2d domains.

B. Considered architectures

Using the GSPConv layer, we build a spectral ResNet,
inspired by regular ResNets [8]. Such a model consists in
assembling a first GSPConv layer, then spectral ResNet
blocks (c.f. Figure 1), and finally a fully connected layer
applied on globally averaged values over the graph. This
architecture is summarized in Figure 1. The main originality
and interest of this architecture is its ability to give importance
to all the frequencies without filtering them explicitly while
doing convolutions, which is the case with standard Graph
Convolutional architectures such as Simple Graph Convolution
Neural Networks [9].

It is parametrized by a depth d, and a number of chan-
nels . It contains a total number of trainable parameters
O(yN + 2dy?N + vC) where C' is the number of classes
in the considered problem.

For comparison purposes, we also propose an architecture
based on a standard Multi-Layer Perceptron (MLP) which
input domain is the graph frequency domain. Such an archi-
tecture exploits the structure of graphs in a very different way
compared to the previous one and is used for stressing the
genericity of our results. For simplicity, we use a fixed number
h of hidden neurons in each layer and a depth d. Such a model
contains a total of O(hN + h?d + hC) trainable parameters.

C. Using pruning to identify important graph frequencies

In the field of classification, pruning [10] is a very active
topic of research that aims at identifying unimportant por-
tions of deep learning architectures and remove them while
maintaining a steady level of accuracy. The motivation is
usually to reduce the number of parameters, hence the memory
usage and the number of computations, resulting in lightweight
models that can better fit constrained environments (e.g., edge
computing). In this work, our aim is to adapt pruning in order
to automatically identify the least important graph frequencies
in our models, then prune them.

A pruning method usually combines multiple ingredients:
1- a pruning criterion which associates a subset of parameters
in the considered architecture with an importance score, 2-
a pruning technique which is typically deployed onto the
parameters with the lowest importance score and 3- a pruning
schedule which defines how the pruning ingredients interact
with the global learning schedule of the considered archi-
tecture. We choose to implement Selective Weight Decay
(SWD) [11] because it has the asset of allowing any subset
of frequencies to be removed at any time during the training
procedure, avoiding harsh sudden effects of other methods,
while being state-of-the-art in competitive vision benchmarks.

In short, SWD consists of the following: at each step of the
learning process, we aggregate all weights associated with a
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Fig. 1. Illustration of the Spectral ResNet model introduced in this paper. The input is seen as a graph signal with 1 channel, it is first embedded as a graph
signal with « channels using a GSPConv layer. Then it goes through d ResNet blocks consisting of the sum between a shortcut path and a sequential path
containing 2 GSPConv layers. The output is seen as a graph signal with ~ channels. The values are averaged over the graph before being fed to a classical

logistic regression.

particular graph frequency [ into a linearized vector. For MLP,
only the first layer of the architecture is concerned, whereas
for Spectral ResNets, we combine all layers weight tensors
©®[l,-,]. We then compute the magnitude of obtained vectors,
and sort them in descending order. The K first vectors of
weights are left untouched, and the remaining ones are applied
an additional weight decay. This additional weight decay
grows exponentially during the learning procedure, starting at
a very low value aq,i, so that the effect of SWD is almost
unnoticeable, and finishing at a value a,,x so large that
it boils down to nullifying the considered values. Once the
procedure is finished, we identify the least important graph
frequencies and remove them from the model, then we retrain
the remaining parameters using the same scheduler as for
baseline architectures, what is referred to as LR-rewinding [12]
in the literature.

Note that pruning graph frequencies has a very different im-
pact on the total number of parameters of considered models.
For MLP, it reduces the parameters to O(hK + h%d + hC)
whereas for Spectral ResNets, it reduces to O(yK +2dy? K +
~C), resulting in a way more dramatic effect.

D. Neuroimaging Data and Graphs

Two datasets of spatial brain activation maps (obtained using
general linear models of functional MRI signals [13]) were
fetched from Neurovault [14]: the second release of IBC [15]
(Neurovault collection 6618), consisting of 13 subjects with
many experimental tasks, and 788 subjects out of the 900
subjects release of the Human Connectome Project [16] (Neu-
rovault collection 4337). As labels for classification, we used
the 24 tasks for IBC, and the 7 tasks for HCP. Here, we
consider a large spectrum of experimental conditions ranging
from motor to memory and social tasks. The datasets were
split in training, validation and test splits. Following the usual
supervised learning pipeline, training data was used to tune
model parameters, validation data to monitor generalisation
accuracy without parameter tuning, and the final accuracy
reported is measured on the test set, using the model with
the best validation accuracy. For HCP, 70 % of subjects were
used for training, 15 % for validation and 15 % for test. For
IBC eight subjects were used for training, three for validation
and two for test. The obtained splits were all balanced.

In this work, we considered two brain graphs to build spec-
tral filters. The first is an average structural graph estimated

TABLE I
HYPERPARAMETERS AND ASSOCIATED PERFORMANCE FOR OUR
BASELINE ARCHITECTURES. RESNET S REFERS TO THE STRUCTURAL
GRAPH AND RESNET F TO THE FUNCTIONAL GRAPH.

model depth | h/v | parameters IBC HCP

MLP 3 10 2.5M 61.6+0.5 | 97.4£0.03
ResNet F 4 7 47T 66.3+0.5 | 96.9£0.06
ResNet S 4 7 47T 55.1+£0.5 | 97.0£0.08

from diffusion weighted images of the HCP dataset (56 healthy
subjects). Graph nodes correspond to the 360 regions of the
Glasser atlas [17] while graph edges are a measure of structural
connectivity strength, as described in [18]. We also considered
another consensus graph, estimated from resting state fMRI
data of 1080 HCP healthy subjects. Also, for the functional
graph, the nodes correspond to the 360 regions of the Glasser
atlas, while edges are a measure of the Pearson correlation
between fMRI time-series during resting state [5]. In order
to ensure that the brain graphs had good spectral proper-
ties while remaining connected, binarized k-nearest-neighbor
graphs were built from the original structural and functional
graphs by connecting each node to its k = 8 neighbors with
strongest connectivity. All the considered models and datasets
are available at our Github!.

IV. EXPERIMENTS

We conducted a set of experiments to answer the series of
questions established in Section II.

A. Experimental details

As a first step, we ran numerous experiments to find good
hyperparameters for our considered architectures. The optimal
hyperparameters are displayed in Table I. Note that ResNets
contain way more parameters than their MLP counterpart, but
as mentioned in Section III, the number of these parameters
dramatically reduces as we restrain the number of considered
graph frequencies. We used batch normalization at the output
of each GSPConv layer and rectified linear units as activation
functions. We standardized the datasets (so that data is cen-
tered and unit-normed) before training and used mixup [19]
during training. We report the averages and 95% confidence
intervals over multiple runs.

Uhttps://github.com/elouayas/gspconv
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Fig. 2. (a)(b) Evolution of the accuracy of various architectures/datasets
as a function of the graph frequency band offset with a bandwith of 60
frequencies. (c) Evolution of the accuracy of various architectures on the
IBC dataset as a function of the graph frequency bandwidth, when the
offset is 0. There are no improvements measured above 80 graph frequencies
inside the band (similar results for the HCP dataset). (d)(e) Evolution of the
accuracy of various architectures/datasets as a function of the number K of
kept frequencies obtained through our pruning methodology. The horizontal
lines correspond to the baseline accuracy. Shaded areas correspond to 95%
confidence intervals. (f) Occurrences of each graph frequency for a fixed K
with the MLP Functional on the IBC dataset.

We observe that there is no model that is universally better
than the others in terms of raw performance. Yet the structural
version of ResNet performs very poorly on IBC compared to
the alternatives, suggesting the structural graph is less adapted
to the considered datasets than its functional counterpart.

B. Impact of graph frequencies

To set up a baseline for the pruning methodology, we
first evaluate the performance of the proposed architectures
when we apply a band selection of the graph frequencies. To
this end, we first identify which parts of the spectrum seem
the most useful for decoding fMRI signals. The results are
depicted in Figures 2(a) and 2(b). We fixed a bandwidth of 60
frequencies and varied the offset, which corresponds to the x
axis. We observe that no matter the architecture nor the graph,
best results are obtained by keeping the low graph frequencies.
Such similar patterns within both graphs can be explained by
previous studies [20].

In Figure 2(c), we vary the bandwidth when the offset is
set to 0. We observe that keeping more than 60 frequencies
does not benefit accuracy by a large margin. We again observe
that the functional graph leads to better results overall than the
structural one. Interestingly, in some cases keeping a portion
of the frequencies leads to better results than the baselines.

TABLE II
BEST GAINS OBTAINED WHEN USING PREDETERMINED FREQUENCY
BANDS OR THE PRUNING STRATEGY ON THE CONSIDERED
ARCHITECTURES AND DATASETS.

model IBC HCP
Size / K = 60 Band Pruning Band Pruning
MLP F 68.7+1.1 | 69.9£1.0 | 96.4+0.1 | 97.2+0.2
MLP S 60.0£1.5 | 62.9£1.0 | 94.2+0.1 | 95.6+0.3
ResNet F 67.0+1.7 | 68.4+1.3 | 96.0+£0.2 | 96.9+0.2
ResNet S 54.5+1.4 | 54.7+1.4 | 93.6 £0.2 | 94.9+0.4

C. Automated selection of optimal graph frequencies

We now test the proposed pruning methodology. Fig-
ures 2(d) and 2(e) depict accuracy as a function of the number
of kept frequencies K. Similarly to Figure 2(c), we observe
that the baseline cannot be outperformed with a limited
number of selected frequencies. Again, the structural graph
leads to poorer performance, suggesting that it is not only its
lower spectrum that is not aligned with the task but that overall
it offers poorer discrimination capabilities on our benchmarks.

Table II reports the best achieved gains with respect to our
baselines, when using either the band or pruning method. We
observe that pruning can consistently lead to improvements
over all our experiments, whereas band selection degrades
the performance in most considered scenarios. This table
highlights the benefits of using the pruning methodology.

In Figure 2(f), we depict the frequencies selected using
the pruning methodology, for various values of K, in the
case of the spectral ResNets on the functional graph and IBC
dataset. We perform 20 runs, and report the number of times
each frequency was selected. Interestingly, we observe that
the lower spectrum is overall preferred, even though it is
not exactly a band of frequencies that is selected, explaining
for the potential benefits over the predetermined frequency
bands. We computed Intersection over Union (IoU) measures
to quantify how reproducible these results are across datasets
and architectures. Our IoU scores are typically above 50%,
suggesting high reproducibility.

In Figure 3, we visualize on the glass brain the most fre-
quently selected eigenvectors of the functional graph. These 4
eigenvectors — U [;,1], U [;, 3], U [:, 4], U [:, 9] associated with
eigenvalues A [1,1], A[3,3], A[4,4], A[9,9] respectively —
are among those that appeared the most frequently when using
pruning with K = 8, under all configurations of models and
datasets. Spatial distributions of largest positive and negative
values of U [:, 1] and U [:, 3] correspond respectively to occip-
ital and superior temporal brain areas, suggesting contributions
of primary visual and auditory systems. U [:, 4] most positive
values are confined to the motor cortex, while U[:,9] in-
cludes medial contributions of the default mode network [21].
These results show how the proposed methodology is able
to identify meaningful graph frequencies (interpreted here as
spatial patterns) for brain activity decoding. As we consider
the graph frequencies common to all the tasks combined,
general purpose brain patterns were found, consistent with the
literature [22]. In future work we will investigate the potential
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Fig. 3. Visualization of most frequently selected graph eigenvectors of the
functional graph on the glass brain.

of this methodology to identify spatial patterns characteristics
of a specific decoded task or of a patient profile.

V. CONCLUSIONS

In this paper, we have introduced a simple deep learning
architecture based on ResNets to process graph-based signals
and applied it to fMRI decoding tasks. Using a pruning
methodology, we selected the most important graph frequen-
cies and observed that keeping 60 out of the 360 initial
frequencies could lead to improved performance. Interestingly,
the selected frequencies seem to be reproducible with other
architectures and datasets. We believe that this study could
help designing more efficient and interpretable graph neural
networks for this important domain of application.
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