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Abstract— The relation between brain functional 
activity and the underlying structure is complex and 
varies depending on the specific brain region. Recently, 
we used graph signal processing to introduce the 
structural-decoupling index (SDI), a novel metric 
quantifying structure-function coupling in brain regions, 
based on graph spectral filtering of functional activity. At 
slow temporal scales accessible with resting-state 
functional magnetic resonance imaging, the SDI showed 
a meaningful spatial gradient from unimodal (more 
coupled) to transmodal regions (more liberal). It also 
showed to perform very well for brain fingerprinting; i.e., 
individuals could be classified with near perfect accuracy 
based on their SDI. Here, we investigate structure-
function coupling at faster temporal scales and its 
specificity to individuals, by means of resting-state 
magnetoencephalography (MEG) of 84 healthy subjects. 
We found that the MEG SDI forms a cortical gradient 
from task-positive regions, more coupled, to task-negative 
regions, highly decoupled. Great specificity of the SDI to 
individuals was confirmed, with largest subject 
classification accuracies in the beta and alpha bands. We 
conclude that structure-function coupling changes across 
temporal scales of investigation and provides rich 
signatures of individual brain organization at rest. 

Keywords — graph signal processing, fingerprinting, 
MEG, structural-decoupling index, brain. 

 

I. INTRODUCTION 
The relation between brain functional activity and 

structural architecture remains to date an open question 
in neuroscience. In previous studies, we introduced the 
structural decoupling index (SDI), a regional measure 
defined within a graph signal processing (GSP) 
framework [1] that quantifies the degree of structure-
function coupling for each brain region [2]. In this 
context, the structural connectome obtained from 

diffusion-weighted magnetic resonance imaging (MRI) 
serves as graph, and functional activity patterns defined 
at the same nodes (brain regions) as graph signals. 
During resting-state and at slow temporal scale probed 
with functional MRI (0.01-0.15 Hz), the SDI shows a 
very specific spatial distribution, spanning from lower-
order sensory and somatomotor functional areas, with 
function highly aligned to the structure underneath, to 
higher-order fronto-parietal ones, more independent 
from the structure [2]. At this slow temporal scale, 
functional connectivity components decoupled from the 
underlying structure demonstrate high specificity to 
individuals and explain a significant portion of inter-
individual cognitive variability, at a level that exceeds 
connectivity components coupled with structure [3]. At 
faster temporal scales accessible with 
electrophysiological recordings (1-50 Hz), the brain 
activity signal can be compactly represented as a linear 
combination of structural connectome harmonics [4] 
which concentrate in the lower frequencies of the 
connectome spectrum [5]. However, the spatial 
distribution of regional structure-function coupling 
across fast temporal scales and their fingerprinting value 
have not yet been investigated. Here, we study for the 
first time how brain structure-function dependencies 
change across temporal scales probed with resting-state 
magnetoencephalography (MEG) and how they relate to 
individual subjects. To this aim, we assess the spatial 
distribution and subject classification performance of 
the SDI computed across distinct (temporal) frequency 
bands −delta, theta, alpha, beta, gamma−, thus 
evaluating the fingerprinting values of such GSP-
derived measure across fast temporal scales. In fact, 
functional brain activity is known already for the ability 
to well distinguish between individuals [6–8]. MEG 
functional connectivity profiles were shown to identify 
a subject within a large group (fingerprinting), 
particularly when considering the alpha and beta 
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frequency bands, and with main contributions from 
parieto-occipital regions including parts of the default 
mode, frontoparietal, and dorsal attention networks [7]. 
In parallel, brain structural features have also been used 
in the past for brain fingerprinting [9]. However, these 
features analyze either structure or function alone: we 
aim here to fill this gap by characterizing the properties 
and fingerprinting value of structure-function 
dependency profiles at fast temporal scales. 

 

II. METHODS 

A. MEG cohort 
The data used for this study consisted of structural 

(T1-weighted MRI) and functional (resting-state MEG) 
acquisitions from 𝑁! = 84 subjects (29.0 ± 3.6 years, 
46% women) of the 1200 Subjects release of the Human 
Connectome Project (HCP-MEG) [10]. T1-weighted 
volumes were acquired at Washington University on a 
dedicated Siemens 3T Skyra scanner with a 32-channel 
head coil, with 0.7 mm isotropic voxel size. MEG 
recordings were collected at St. Louis University on a 
whole-head MAGNES-3600 system including 248 
magnetometers and 23 reference channels, at 2034 Hz 
sampling rate and in three separate runs of 
approximately 6 min each within a single-day. Only the 
first two runs were considered in this study and 
randomly tagged as test and retest datasets for each 
subject. Complete details about MRI and MEG data can 
be found elsewhere [10,11]. 

 

B. Data Processing 
T1-weighted volumes were segmented into 148 

cortical regions of interest (Destrieux parcellation [12]) 
within the HCP pipeline. Preprocessed sensor-level 
MEG data were downloaded from the HCP database and 
projected to the 148 region centroids to obtain source-
level MEG timecourses. The HCP preprocessing 
includes rejection of bad channels and data segments; 
notch filtering to remove power line noise; artefact 
removal using independent component analysis; 
temporal downsampling to 500 Hz [13]. The same 
processing procedure explained in details in [7] and 
briefly outlined in the following was adopted here. 
Source reconstruction was performed with FieldTrip and 
linearly constrained minimum-variance beamforming 
method using subject-specific forward lead field models 
[14]. The source timecourses of each subject and run 
were then subdivided into 19 epochs of 12 s duration 
(6108 samples) and bandpass filtered into the five 
canonical frequency bands: delta (1–4 Hz), theta (4–8 
Hz), alpha (8–13 Hz), beta (13–30 Hz), and gamma (30–
48 Hz) using two-way FIR filters of order 2034. The 
envelope of band-passed timecourses was computed as 
the magnitude of the Hilbert transform [13] of signals 
and used for the following GSP analyses. Finally, a  

 
Fig.1 Graph Signal Processing Pipeline. a) A group 
representative healthy structural connectome (SC) is obtained 
by averaging the SCs of 100 HCP subjects based on the 
Destrieux 148-regions parcellation. b) For each subject and 
run, single frequency band magnetoencephalography (MEG) 
functional data at each timepoint was projected onto SC 
harmonics (SC Laplacian eigenvectors) and c) filtered with a 
low-pass (LP) and high-pass (HP) filter, with cutoff chosen 
based on median energy split criterium. The SDI was 
computed as the ratio between the decoupled and coupled 
portions of signals. 
 
reference structural connectome was computed from the 
diffusion MRI data of 100 HCP subjects (U100 release) 
as previously described in [3], representing the weighted 
white-matter connections between the same 148 cortical 
regions considered for functional processing. 
 

C. GSP Framework and Structural-Decoupling Index 
The GSP framework detailed in [2] and summarized 

in Fig. 1 was used to obtain the SDI for each subject, run, 
and frequency band. In particular, the reference 
structural connectome is considered as adjacency matrix 
of a graph and symmetrically normalised with respect to 
the degree matrix to obtain 𝐴!"## . Structural 
harmonics 𝑢$ are then obtained by eigendecomposition 
of the structural Laplacian 𝐿 = 𝐼 − 𝐴!"##  (where 𝐼 is 
the identity matrix): 

           𝐿𝑈 = 𝑈𝛬 ,                (1) 
 
where each eigenvalue [𝛬$,$ 	] = 𝜆$  can be interpreted 
as spatial frequency of the corresponding structural 
harmonic (eigenvector) 𝑢$ . Functional data 𝑠&  at each 
timepoint 𝑡  is then projected onto the structural 
harmonics by assessing the spectral coefficients 
 

          𝑠&2 = 𝑈'𝑠& ,                (2) 
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and filtered into two components with ideal low- and 
high-pass filters; i.e., a coupled one obtained as 𝑠&( =
𝑈(*+,)𝑠&2 	 and a decoupled one as 𝑠&. = 𝑈(/01/)𝑠&2 , 
respectively (𝑈(*+,)  being a matrix with the  first 
eigenvectors complemented by zeros, and 𝑈(/01/) being 
a matrix with  first columns of zeros followed by the 
remaining last eigenvectors). To avoid subject-bias, the 
cut-off to filter functional activity based on structural 
harmonics was fixed to the average spectral median-split 
value across subjects, epochs and runs, for each 
frequency band, and this corresponded to 𝑐 =
56, 56, 58, 56, 55  for the delta, theta, alpha, beta and 
gamma frequency bands, respectively. Coupling 	𝑁(   
and decoupling 	𝑁.   were quantified for each epoch and 
brain region as the l2-norm across time of the coupled 
and decoupled signal portions 𝑠&(   and 𝑠&., and the SDI 
was computed as their ratio: 
 

          SDI = 	𝑁.  / 	𝑁( .                        (3) 
 
 The SDI cortical map of each subject, run (test/retest), 
and frequency band was obtained as the average over the 
19 epochs. 
 

D. Subject Classification 
 Linear support vector machine (SVM) classifiers 
with 𝑁! = 84  classes were trained to identify 
individuals based on their structure-function coupling 
characteristics in different frequency bands (each band 
was analysed independently). Subject classification 
accuracy was assessed with 7-fold cross-validation 
(CV), where each time the SVM was trained on 156 data 
points (i.e., 72-subject test and retest datasets, and 12-
subject retest dataset) and tested on unseen 12 data 
points (i.e., 12-subject test dataset). In each CV loop, a 
one-versus-all multiclass linear SVM classifier with 
error-correcting output codes modelling was trained on 
training data with the fitcecoc MATLAB v.R2019b 
function and used to predict the subject in the unseen 
data. No hyperparameter tuning was involved in the 
classifiers’ training. This procedure was repeated 100 
times to obtain classification accuracy confidence 
intervals. 
 

E. Brain Fingerprinting Patterns 
Analyses of variance (ANOVAs) were performed to 

identify brain patterns reflecting the main effect of 
subject, therefore including regions where SDI is more 
specific to individuals (which we can also refer to as 
fingerprinting patterns) [3]. Regional SDI values in a 
specific frequency band were used as dependent 
variable, and subject as explanatory variable. F-values 
were considered significant for 𝑝 < .05, Bonferroni 

 
 

Fig.2 MEG structural-decoupling index (SDI). a) Group-
average SDI cortical distributions in the alpha (first row) and 
beta (second row) bands, with red tones highlighting regions 
more coupled with the structure underneath, and blue tones 
indicating regions more decoupled from structure (log2 
scaling). b) Alpha-band SDI values for individual subjects 
(test data) across brain regions (log2 scaling). c) Similarity 
between SDI cortical distributions across frequency bands, 
quantified with the Pearson’s correlation coefficient (r). 
 
corrected across brain regions. The analysis was 
repeated for each frequency band. 
 

III. RESULTS 

A. Structure-Function Coupling across Frequency 
Bands 
The regional SDI was computed for each subject (test 

and retest data) and each frequency band. The cortical 
distributions of SDI values were highly similar across 
subjects, for all frequency bands (average inter-subject 
correlation 𝑟 = 0.903 ± 0.058 ) (Fig. 2b). Fig. 2a 
depicts the group-average cortical SDI distribution in the 
alpha and beta bands. A clear dichotomous pattern is 
visible: on one side, task-positive networks including 
somatomotor, visual, and frontoparietal regions are 
coupled with the underlying structural graph (blue 
regions). On the other side, task-negative (default mode) 
networks are more decoupled from structure (red 
regions). The structures with higher SDI values 
(stronger decoupling) were the bilateral precuneus, 
posterior cingulate, and middle temporal cortices in all 
the investigated bands. The SDI cortical patterns were 
relatively similar across frequency bands (Fig. 2c; 
average cross-band SDI correlation 𝑟 = 	0.872 ). The 
largest similarities were found between the delta and 
gamma bands (𝑟 = 	0.966) and the theta and beta bands 
(𝑟 = 	0.979); the SDI pattern in the alpha bands was the 
most distinct (average 𝑟 = 	0.794). 

 

B. Subject Classification 
Subject identification accuracy assessed with SVM  
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Fig.3 SDI fingerprinting at fast temporal scales. a) Cortical 
fingerprinting patterns (F-values from ANOVA analyses) in 
the alpha (first row) and beta (second row) bands. b) Subject 
classification accuracies in the five frequency bands. Bars 
and error whiskers indicate mean ± standard deviation across 
100 runs of 7-fold cross-validation. c) Similarity between 
fingerprinting cortical patterns across frequency bands, 
quantified with the Pearson’s correlation coefficient (r). 
 

classification and repeated 7-fold CV was largely 
above chance level, ranging from 92.00% in the delta 
band to 95.38% in the beta band. Identification accuracy 
was higher in the beta and alpha (94.27%) bands, 
followed by the gamma (93.82%), theta (92.95), and 
delta bands, with low variability across CV runs 
(accuracy standard deviation across frequency bands 
ranged between 0.39% and 0.69%) (Fig. 3b). 

 

C. Brain Fingerprinting Patterns 
Brain regional contribution to subject identification 

was assessed with ANOVA analyses, separately for 
each frequency band. Almost all brain regions 
significantly contributed to subject identification (delta: 
98%, theta: 98%, alpha: 99%, beta: 100%, gamma: 99% 
significant brain regions, i.e., 𝑝 < .05  corrected for 
multiple comparisons due to the 148 brain regions). 
Overall, the cortical fingerprinting patterns mainly 
concentrate in the superior frontal gyri, posterior 
cingulate cortices/precuneus, middle temporal gyri 
(part of the default mode network) and secondary visual 
cortices, including both regions coupled and decoupled 
from structure (compare Fig. 2a and Fig. 3a). 
Yet, there were significant variations across frequency 
bands, with average cross-band similarity of 
fingerprinting patterns 𝑟 = 0.554 ± 0.093 (Fig. 3c). 
 

IV. DISCUSSION 
In this work, we investigated cortical patterns of 
structure-function coupling in 84 healthy subjects, in 
relation to five different frequency bands and to subject 
identification accuracy (brain fingerprinting). We found 

that, at the fast temporal scales accessible with MEG, 
the group-average SDI cortical patterns are remarkably 
different from those observed at slower temporal scales. 
Functional-MRI SDI mainly evolves along a lower-
order to higher-order system axis, with visual and 
somatomotor regions coupled with structure and fronto-
parietal regions for higher-order cognition decoupled 
from structure [2]. Instead, in MEG data the SDI seems 
to vary along a task-positive to task-negative axis, with 
default mode network regions distinctively decoupled 
from structure. Yet, the functional activity of regions of 
the fronto-parietal network appears coupled with the 
underlying structural graph. Future work should 
directly compare SDI topographies derived from fMRI 
and MEG data recorded in the same subjects, and 
explore how they may differ as a function of the 
temporal and spatial (parcellation) scales of 
investigation.     
Further, we confirmed the high fingerprinting value of 
SDI, even at these faster temporal scales, and found that 
the subject uniqueness of MEG SDI fingerprints is 
higher in the beta and alpha bands. This result is in line 
with previous fingerprinting analyses on MEG 
functional connectivity which however discard the 
structural connectivity information [7,15]. Similarly to 
SDI, subject classification accuracy based on MEG 
functional connectivity is particularly high in the alpha 
and beta bands (84% to 99% [7,15]), even though 
accuracies vary depending on the way functional 
connectivity is quantified (particularly, phase-based vs 
amplitude-based connectivity measures), with spatial 
leakage effects representing a potential confounding 
factor [7]. Future work should investigate the value of 
jointly considering multiple frequency bands, and/or 
multiple tasks [16] for MEG-based SDI assessment and 
individual fingerprinting. 

Finally, this preliminary work may be extended by 
investigating the relationship between individual SDI 
patterns across different frequency bands, and individual 
cognitive and behavioral profiles.  

 

V. CONCLUSION 
The level of structure-function coupling in different 
brain regions and its specificity to individual subjects 
depend on the temporal scales of investigation. The 
structural-decoupling index provides a new signature of 
brain organization at the fast temporal scales accessible 
with MEG. 
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