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Abstract—Deep learning has revolutionized many image pro-
cessing tasks such as classification or segmentation and, more re-
cently, gives very promising results for solving inverse problems.
There however remains a gap between the deep learning black-
box approaches and the more recently unrolled deep learning
techniques proposed to bring the physics of the model and
standard solving techniques into the network design. In order to
understand more precisely the mechanisms, we place ourselves
in the framework of the simple study of image denoising and we
study four networks designed from unrolled forward-backward
iterations in the dual, FISTA in the dual, Chambolle-Pock, and
Chambolle-Pock exploiting the strong convexity. Performance
and stability obtained with each of these networks will be
detailed. A comparison between these approaches, standard
penalized likelihood approaches, and the state-of-the-art black-
box approach DnCNN is also provided.

Index Terms—Image denoising, unfolded proximal algorithms,
accelerated methods, deep learning

I. INTRODUCTION

Deep learning has renewed many fields of image processing
tasks such as classification, segmentation and, more recently,
inverse problems solving. For several years, there was a
gap between standard image processing and neural network
procedures as the first one was guided by the physics of
the data acquisition and prior knowledge about the object to
analyze or recover while the second one was considered as a
very efficient prior-free black-box procedure.

Recent works make the bridge between standard image
processing techniques and deep neural networks architectures
helping in the understanding and the analysis of this complex
highly nonlinear tool.

On the one hand, several works have established relations
between deep strategies and wavelet transform literature, thus
inheriting wavelet properties. Wavelet scattering transforms
that cascade wavelet transform with nonlinear modulus and
averaging operators, benefit from a mathematical framework
explaining important properties of deep convolution networks
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[1], [2] while in [3] the authors prove that affine systems,
including several wavelets or frame transforms, can be approx-
imated by deep neural networks with minimal connectivity and
memory requirements.

We can also refer to the link between neural networks
and nonlocal denoising filtering techniques (e.g., nonlocal
means [4] or BM3D [5]) through their neural tangent kernel
[6], allowing to avoid the costly training step.

On the other hand, the deep unfolded approaches (cf. LISTA
for the pioneering work [7]) have helped connect penalized
likelihood approaches to neural networks. The two strategies
feed off each other providing then a better understanding of
neural network architecture and a formal framework toward
the design of robust neural networks based on explicit links
between activation functions and proximity operators [8].
Focus of unfolded architectures – The unfolded deep archi-
tectures rely both on an objective function to minimize (e.g.,
F ) and an algorithmic procedure adapted to the properties of
the objective function. For almost any given image processing
problem, there exists a massive literature dedicated to the
choice of the objective function F and to algorithmic schemes
to design a sequence of iterates (xk)k∈N that converges
efficiently to a minimizer x̂ of F . A standard criterion to
measure the efficiency of an algorithm is the convergence
rate. For instance, handling with strong convexity property into
Chambolle-Pock iteration leads to F (xk)−F (x̂) ≤ ζ/k2 while
the standard iterations are reduced to F (xk) − F (x̂) ≤ ζ/k
where ζ is a constant [9].

However, to the best of our knowledge, when considering
unfolded architectures, the impact of accelerated schemes on
learning performance has not been studied yet and is the
core of our contribution. To better understand the mechanisms
with or without employing accelerated schemes and also to
facilitate the presentation of the proposed unfolded networks,
we handle this question in the context of image denoising
focusing on two standard algorithms of the image processing
literature: Iterative Soft Thresholding Algorithm (ISTA) [10]–
[12] and Chambolle-Pock (CP) [9].
Contributions – The contributions of this work are: (i) the
design of end-to-end trainable unfolded deep architectures
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for eeeimage denoising based on two standard iterative algo-
rithms (ISTA and CP) and their associated accelerated version
(FISTA [13], [14] and CP with strong convexity assumption [9,
Algorithm 2]), (ii) the formulation of Deep-(F)ISTA-GD
and Deep-(Sc)CP-GD as two neural networks expressed
as the combination of weight and activation functions with
closed-form expressions. Each of them includes an extra
parameter allowing to consider the basic algorithm or its accel-
erated version, (iii) a study of the performance and robustness
of the proposed networks and comparison to standard DnCNN
regarding the learning cost and the stability.

The remainder of this paper is organized as follows. Sec-
tion II provides a brief recall of the considered iterative
algorithms and introduces the unfolding procedure of these
algorithms. The robustness of the proposed networks is intro-
duced and discussed. Section III is dedicated to the numerical
experiments and comparisons with state-of-the-art methods.

II. UNFOLDED DEEP LEARNING ARCHITECTURE

A. Image denoising and associated objective function

Our study focusses on the standard image denoising task,
which consists to recover the original image x ∈ RN from its
degraded version z = x + n ∈ RN , where n ∼ N (0, δ2IdN )
denotes an additive white Gaussian noise with a standard
deviation δ > 0. Thus, considering a prior imposing spar-
sity after some linear transform, and according to Bayesian
interpretation, maximizing the a posteriori distribution reads:

x̂ = argmin
x∈RN

F (x) :=
1

2
∥x− z∥22 + g(Dx), (1)

where D ∈ R|F|×N denotes a linear operator that converts the
image in RN to a feature space R|F| with |F| ≥ N , and g
denotes a proper, lower-semicontinous, convex function from
R|F| to (−∞,+∞]. A standard choice for g is a ℓ1-norm or
a hybrid ℓ1,2-norm to favor the sparsity of the features. In
the standard penalized likelihood approaches, a regularization
parameter appears in front of g and the variance of the noise
can be added in front of the data fidelity-term. In this work,
these parameters are merged within D.

B. Proximal algorithms: (F)ISTA and (Sc)CP

Despite the simplicity of the minimization problem (1), its
resolution requires to handle with iterative schemes as no
closed form expression exists in a general framework (see a
contrario when D is orthonormal, e.g., a wavelet transform).
In this work, we focus on two algorithmic schemes: ISTA
and CP, as both offer accelerated procedures: FISTA or CP
involving strongly convexity (ScCP).
(F)ISTA in the dual – Because the proximity operator of
g(Dx) does not have a closed form expression, (F)ISTA
requires to handle the dual formulation of problem (1), leading
to x̂ = z−D⊤û where 1:

û ∈ Argmin
u∈R|F|

F̃ (u) :=
1

2
∥D⊤u− z∥22 + g∗(u) (2)

1The constant terms depending solely on z as has been removed.

with g∗ the Fenchel conjugate of g (e.g. g = ∥ · ∥1 then g∗ =
ι∥·∥∞≤1 the indicator function of the ℓ∞-ball). The resulting
FISTA iterations [13] [14] read, for every iteration k, uk+1 = proxτkg∗

(
(Id|F| − τDD⊤)yk + τDz

)
yk+1 = (1 + αk)uk+1 − αkuk

(3)

where u1 ∈ R|F|, and y1 ∈ R|F|. The sequence (uk)k∈N
converges to û when αk = tk−1

tk+1
and tk+1 = k+a−1

a , a > 2,

τ < 1
∥D∥2 and F̃ (uk)− F̃ (û) ≤ ζ

k2 . When αk ≡ 0, these itera-
tions reduce to ISTA. The convergence of the iterates is proved
when τ < 2

∥D∥2 for this limit case, and F̃ (uk) − F̃ (û) ≤ ζ
k

where ζ > 0 is a constant defined in [13].
(Sc)CP – CP iterations can be directly applied to the min-
imization problem (1). The data-term being strongly convex
of parameter γ = 1, the accelerated CP (ScCP: for Strongly
convex CP) [9, Algorithm 2] can be employed, leading to, for
every iteration k, uk+1 = proxτkg∗

(
uk + τkD

(
(1 + αk) xk − αkxk−1

))
xk+1 = σk

1+σk
z + 1

1+σk
xk − σk

1+σk
D⊤uk+1

(4)

where αk = 1√
1+2γσk

, σk+1 = αkσk, τk+1 = τk
αk

. The
update of xk+1 comes from the proximity operator expression
of the squared ℓ2-norm : proxσk

2 ∥·−z∥2
2

(
xk − σkD

⊤uk+1

)
=

σkz+xk−σkD
⊤uk+1

1+σk
. This general framework fits both the ScCP

iterations [9, Algorithm 2] and the standard CP iterations
[9, Algorithm 1] when γ = 0, σk ≡ σ, τk ≡ τ and
assuming στ∥D∥2 < 1. The sequence (xk)k∈N converges to
the minimizer of (1) and convergence rates have already been
provided in the introduction.

C. Unfolded architecture for (F)ISTA and (Sc)CP

From a training set S = {(xs, zs)|s = 1, . . . , I} where
xs denotes a clean image, and zs the associated noisy one,
the goal of a deep denoiser fΘ̂ is to learn parameters Θ̂, to
minimize the following standard empirical loss:

Θ̂ ∈ Argmin
Θ

E(Θ) :=
1

I

I∑
s=1

∥xs − fΘ(zs)∥22. (5)

Standard networks with K layers can be written as, ∀z∈RN ,

fΘ(z) = η[K]

(
· · · η[1]

(
W [1]z + b[1]

)
· · ·+ b[K]

)
, (6)

where, for every k∈{1, . . . ,K}, in the generic learning frame-
work (e.g DnCNN [15]), W [k] denotes a linear transform such
as convolutions or pooling to reduce the number of parameters,
associated with a bias b[k], and a nonlinear activation function
η[k] (e.g ReLu, sigmoid, HardTanh . . . ).

We propose two networks taking the form of (6):
Deep-(F)ISTA-GD (Network 1) and Deep-(Sc)CP-GD
(Network 2). Illustrations of the two networks are provided in
Figure 1.
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Fig. 1. Architecture of the proposed Deep-(F)ISTA-GD (top) and Deep-(Sc)CP-GD (bottom).

Network 1. Deep-(F)ISTA-GD for Gaussian Denoising
has the following architecture, for every k ∈ {2, . . . ,K − 1}:

W [1]=

[
D

[1]
1

(Id|F| −D
[1]
1 D

[1]
2 )D

[1]
1

]
,

b[1]=

[
0

D
[1]
1 z

]
, η[1]=

{
Id|F|

HardTanhλ

}
,

W [k]=

[
0 Id|F|

−αk−1(Id|F| −D
[k]
1 D

[k]
2 ) (1 + αk−1)(Id|F| −D

[k]
1 D

[k]
2 )

]
,

b[k]=

[
0

D
[k]
1 z

]
, η[k]=

{
Id|F|

HardTanhλ

}
,

W [K]=
[
0 −D

[k]
2

]
, b[K]=z, η[K]=IdN .

Network 2. Deep-(Sc)CP-GD for Gaussian Denoising has
the following architecture, for every k ∈ {2, . . . ,K − 1}:

W [1]=

[
IdN

2D
[1]
1

]
, b[1] =

[
0

0

]
, η[1] =

{
IdN

HardTanhλ

}
,

W [k]=

[
1

1+σk−1
− σk−1

1+σk−1
D

[k−1]
2

1+αk
1+σk−1

D
[k]
1 − αkD

[k]
1 Id|F| −

(1+αk)σk−1

1+σk−1
D

[k]
1 D

[k−1]
2

]
,

b[k] =

[ σk−1

1+σk−1
z

(1+αk)σk−1

1+σk−1
D

[k]
1 z

]
, η[k] =

{
IdN

HardTanhλ

}
,

W [K]=
[
IdN 0

]
, b[K] = 0, η[K] = IdN .

Proposition 2 (resp. Proposition 3) establishes the relation
between Network 1 (resp. Network 2) and (F)ISTA (resp.
(Sc)CP algorithm) described in section II-B. These relations
are established when g = ∥ · ∥1 noticing that the proximity
operator of the conjugate of the ℓ1-norm fits the HardTanh
activation, a standard activation function used in deep denoiser.

Proposition 1. The proximity operator of the conjugate of
the ℓ1-norm scaled by parameter λ > 0 fits the HardTanh
activation function, i.e., for every x = (xi)1≤i≤N :

P∥·∥∞≤λ(x) = HardTanhλ(x) = (pi)1≤i≤N

where

pi =


−λ if pi < −λ,

λ if pi > λ,

pi otherwise.

Proposition 2. We set, for every k ∈ {1, . . . ,K},D[k]
1 ∈

R|F|×N ,Dk
2 ∈ RN×|F|, W [k], b[k]and η[k] provided by Net-

work 1. If g = ∥ · ∥1, D[k]
1 = τkD and D

[k]
2 = D⊤, u0 = u1 =

D
[1]
1 z, y1 = (Id−D

[1]
1 D

[1]
2 )D

[1]
1 z, then Deep-(F)ISTA-GD

network fits the generic (F)ISTA scheme (3).

A similar proposition holds for Deep-(Sc)CP-GD.

Proposition 3. We set, for every k ∈ {1, . . . ,K},D[k]
1 ∈

R|F|×N ,D
[k]
2 ∈ RN×|F|, W [k], b[k], and η[k] provided by Net-

work 2. If g = ∥·∥1, D[k]
1 = τkD and D

[k]
2 = D⊤, x0 = x1 = z,

α1 = 1, u1 = D
[1]
1 z, then the Deep-(Sc)CP-GD network fits

the generic (Sc)CP scheme (4).

D. Robustness of the newtork

Following [8], Network 1 and Network 2 have a Lipschitz
behavior with Lipschitz constant χ =

∏K
k=1 ∥W [k]∥. Thus,

given an input z and a perturbation ϵ, we can majorize the
perturbation on the output via the inequality

∥fΘ(z + ϵ)− fΘ(z)∥ ≤ χ∥ϵ∥.

χ can be used as a certificate of the robustness of the network
provided that it is tightly estimated. Tighter bound exists but
at the price of much more complex computations.
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III. EXPERIMENTS

This section provides numerical comparisons between
Deep-ISTA-GD, Deep-FISTA-GD, Deep-CP-GD and
Deep-ScCP-GD, and aims to illustrate the impact of handling
with unfolded deep accelerated schemes. Comparisons with
state-of-the-art methods are also provided.

A. Experimental setting

Training and testing datasets – We combined RGB-images
obtained from BSD500 and BSD300 [16] to construct our
dataset including 300 training images of size 180 × 180 and
300 testing images of size 320×320 both being cropped from
the database, as suggested in [15]. In our experiments, no
data augmentation like flip or rotation has been done. The
images are degraded with a white Gaussian noise with standard
deviation δ = {50, 100}.
Strategy to compare – We compare four configurations of the
unfolded strategies described in Section II: Deep-ISTA-GD
with parameter Θ= {D[k]

1 ,D
[k]
2 , α[k] ≡ 0}, Deep-FISTA-GD

with parameter Θ = {D[k]
1 ,D

[k]
2 , α[k]}, Deep-CP-GD with

parameter Θ = {D[k]
1 ,D

[k]
2 , σ[k], α[k] ≡ 1} suited to the

case without handling with strong convexity (i.e., γ = 0),
Deep-ScCP-GD with parameter Θ = {D[k]

1 ,D
[k]
2 , σ[k], α[k] =

1√
1+2σ[k]

} associated with the choice γ=1.

Parameter setting – We train all of our networks on Pytorch
with ADAM optimizer [17] with 500 epochs and a learning
rate set to 10−4. The batch size is set to 4 in Section III B
and set to 10 for Sections III C-D. The impact of the network
depth K and the feature size |F| will be evaluated.

B. Standard versus accelerated unfolded schemes

In Figure 2, we provide a comparison between
Deep-ISTA-GD, Deep-FISTA-GD, Deep-CP-GD,
and Deep-ScCP-GD for different choices of layer
number K = {5, 13, 21, 29, 37} and feature size
|F|
N = {13, 21, 29, 37, 45}. The maps reported in Figure 2[top]
displays the performance in terms of average PSNR over
the testing dataset w.r.t (K, |F|

N ). The map reported in
Figure 2[bottom] displays the value of χ measuring the
robustness for each network, where for every k, ∥W [k]∥ is
computed with the power method.

We observe on the top row of Fig. 2 that Deep-FISTA-GD
achieves better PSNR that Deep-ISTA-GD and that
Deep-ScCP-GD achieves better PSNR that Deep-CP-GD
for every set of parameters (K, |F|

N ), allowing to con-
clude that accelerated schemes perform better. Additionally,
Deep-ScCP-GD appears to be the most efficient method
among the four for each range of parameters.

In Fig. 2[bottom], we can observe that all networks have
similar behaviours. The deeper is the network, the larger is
the parameter χ. This tends to conclude that the deeper is
the network the less robust is the network, which might be
explained by the huge amount of parameters to learn for deeper
networks.

Deep-ISTA-GD Deep-FISTA-GD Deep-CP-GD Deep-ScCP-GD

Fig. 2. 1st row: PSNR and 2nd row: χ (exponential scale) on a grid
comparison between different choices of depth K and number of features |F|

N
for each model. Yellow color corresponds to a good performance for each
criterion (i.e. large PSNR and small robustness coefficient).

C. Learning behaviour and comparison with DnCNN

In this section, the proposed networks are trained with
K = 13 and |F|

N = 21 being a good compromise between
performance and robustness. We compare the proposed net-
works to DnCNN that appears to be one of the most efficient
according to [15]. DnCNN has been re-implemented and re-
trained with K = 9 and |F|

N = 13. K and |F|
N has been

selected to obtain a similar number of parameters to train for
all networks (i.e. ∼ 14800 parameters). The batch size is set to
10, leading to a gain of almost 1 dB for all methods compared
to a training with batch size of size 4.

Training loss PSNR on test dataset

Fig. 3. Comparisons between Deep-ISTA-GD, Deep-FISTA-GD,
Deep-CP-GD, Deep-ScCP-GD, and DnCNN in terms of Training loss and
Averaged PSNR on the testing dataset. (top) δ = 50 (bottom) δ = 100.

In Fig.3, we observe that the training losses converge
faster for accelerated-based unfolded schemes and that
Deep-ScCP-GD reaches a higher PSNR faster than DnCNN.
In terms of performance, from the PSNR plot, when δ = 50,
only Deep-ScCP-GD provides better (even close) results
than DnCNN and we can observe that Deep-ScCP-GD is
much more stable than DnCNN (cf. oscillations in the black
plot). For a larger value of δ, the benefit of Deep-ScCP-GD
compared to DnCNN is observed both in terms of PSNR and
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stability. In the next section, we only run experiments with
Deep-ScCP-GD.

D. Visual comparisons

In Figure 4,we provide visual comparisons between our
proposed Deep-ScCP-GD and state-of-the-art methods: TV
[18], NL-TV [19], DnCNN [15]. The hyperparameters in TV
and NL-TV are trained on the training dataset with a multigrid
search-parameter strategy described in [20]. TV and NL-TV
fits the minimization of (1) when g = ℓ1,2-norm and for
different choices of |F|

N . The estimate x̂ is obtained with
FISTA. We can observe the good performance of the proposed
Deep-ScCP-GD compared to state-of-the-art physics-based
methods (TV, NL-TV) and black-box strategy (DnCNN).

δ
=

50

Original Noisy TV NL-TV DnCNN Proposed

PSNR/SSIM 14.14/0.25 26.01/0.84 26.57/0.85 27.87/0.86 28.20/0.87

PSNR/SSIM 14.15/0.13 26.02/0.76 27.71/0.79 28.43/0.79 28.80/0.81

δ
=

10
0

PSNR/SSIM 8.13/0.09 23.61/0.76 23.99/0.76 24.44/0.76 25.19/0.80

PSNR/SSIM 8.14/0.043 24.47/0.64 25.08/0.65 25.36/0.65 25.88/0.70

Fig. 4. Comparison between TV [18], NL-TV [4], DnCNN [15] and our
proposed network Deep-ScCP-GD on different RGB images degraded with
a white Gaussian noise of standard deviation δ.

IV. CONCLUSION

In this work, we proposed two deep unfolded networks
for gaussian denoising that can be activated from standard
or accelerated schemes. All networks are related to standard
proximal algorithms: ISTA, FISTA, CP, and ScCP. Our nu-
merical experiments illustrate the benefit to unroll accelerated
schemes when possible. Additionally, the proposed scheme
Deep-ScCP-GD is the most efficient from the PSNR per-
formance and stability, and obtain better results than state-
of-the-art methods. Further experiments on the impact of

the structure of the linear operators (D[k]
1 = τk(D

[k]
2 )⊤ or

D
[k]
1 ̸= τk(D

[k]
2 )⊤) accelerated schemes for solving more

complex inverse problems would be investigated in future
works.
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