
Learning the Image Prior by Unrolling an
Optimization Method

Silvia Bonettini∗, Giorgia Franchini†, Danilo Pezzi‡ and Marco Prato§
Department of Informatics, Physics and Mathematics, University of Modena and Reggio Emilia

Modena, Italy
Email: ∗silvia.bonettini@unimore.it, †giorgia.franchini@unimore.it, ‡danilo.pezzi@unimore.it, §marco.prato@unimore.it

Abstract—Nowadays neural networks are omnipresent thanks
to the amazing adaptability they possess, despite their poor
interpretability and the difficulties they give when manipulat-
ing the parameters. On the other side, we have the classical
variational approach, where the restoration is obtained as the
solution of a given optimization problem. The bilevel approach
is connected to both approaches and consists first in devising
a parametric formulation of the variational problem, then in
optimizing these parameters with respect to a given dataset
of training data. In this work we analyze the classical bilevel
approach in combination with unrolling techniques, where the
parameters of the variational problem are trained with respect
to the results obtained after a fixed number of iterations of
an optimization method applied to it. This results in a large
scale optimization problem which can be solved by means of
stochastic methods; as we observed in our numerical experiments,
the stochastic approach can produce medium accuracy results in
very few epochs. Moreover, our experiments also show that the
unrolling approach leads to results which are comparable with
those of the original bilevel method in terms of accuracy.

Index Terms—bilevel optimization, unfolding, image denoising,
sparse model, stochastic gradient, machine learning, Green AI.

I. INTRODUCTION

Image denoising is a standard type of linear inverse prob-
lem, in which the observed data f is a corrupted version of
the original object g by some kind of (usually) additive noise,
i.e., f = g+η. Since, by nature, the noise is the realization of
a collection of i.i.d. random variables, one needs to devise a
scheme to retrieve only a reconstruction of the unknown image
g, starting from f .

One popular way of solving inverse problems is employing
a variational model, which requires computing the minimum

argmin
u

E(u) ≡ D(u; f) + ρR(u),

where E represents a suitable energy functional composed by
the sum of two terms, which are balanced by the coefficient ρ.
The selection of the data-fidelity D term is typically motivated
by probabilistic considerations on the nature of the noise: if η
follows a Gaussian distribution, then an appropriate distance is
the ℓ2-norm, while if it is obtained by a Poisson distribution,
a better choice would be the Kullback-Leibler divergence [1].
The regularization function R, also called image prior, is used
to incorporate additional information in the reconstruction. In
the regularization field, one of the most famous models is
the one proposed by Rudin, Osher and Fatemi in [22] where
sparsity is imposed on the gradient of the image in order to
preserve its edges.

The selection of the regularization functional is crucial,
and in the last years several data-driven approaches have
been developed to help its effective design [5]. As described
by M. Moeller and D. Cremers in [18], various deep and
machine learning techniques are being utilized to find the

best parameters of both variational models as well as of the
optimization algorithms meant to solve them. In this context,
neural networks represent a great tool with a multitude of
applications and uses, at the price of interpretability. On the
other hand, bilevel optimization strategies (e.g. [4], [20] and
[14]), while being more difficult to handle, do not lose sight
of the underlying energy functional.

In this work we focus on the latter approach to learn a
sparsity inducing image prior. Even if it does not require
a massive amount of samples, the training phase can still
be significantly time and energy consuming, that is why
we use stochastic algorithms to solve the upper level loss
minimization.

In the literature, the importance of setting the hyperpa-
rameters connected to the stochastic optimiser, in particular
steplength and sample size, is well known. By referring to
hyperparameters, we are meaning all those parameters that
are not tuned during the training phase. This process can be
particularly computationally expensive, which is why several
approaches have been proposed in the literature for the auto-
matic setting of these hyperparameters in the stochastic field
[9], [10], including with reduced variance methods [11]. In all
of these approaches, great benefit is derived from the automatic
setting of hyperparameters, both from the point of view of
performance and resource consumption.

Nowadays, it is necessary to remark the importance of
not wasting computational resources, in an optic of Green
AI (Artificial Intelligence). In the lower level problem, we
unroll, for a small number of iterations, a gradient descent
scheme. This choice leads to several advantages, since we
circumvent numerical issues, avoid the need of exactly solving
a minimization problem, and automatically learn the steplength
sequence.

II. THE PROBLEM

In this section we discuss the work of Y. Chen, R. Ranftl
and T. Pock in [6] and our contributions to improve the overall
performance of the model. The focus is on the regularizer of
the energy functional

E(u) = D(u; f) +

Nf∑
i=1

αiϕ(ai ∗ u), u ∈ Rn

where each ai is a convolution kernel, Nf is the number
of filters, αi is the weight relative to the i-th filter and
ϕ ∈ C2(R) is a sparsity inducing function, applied pixel-
wise to the resulting convolution. The data fitting term D
is taken as ∥u − f∥22 since we work with images corrupted
by additive Gaussian noise. The regularization parameter is
implicitly included in the filter weights {αi}i=1,...,Nf

.

952ISBN: 978-1-6654-6798-8 EUSIPCO 2022



For the rest of this work, the convolution is going to be
written as a matrix-vector dot product, with Ai denoting
the matrix constructed from the kernel ai. Moreover, each
Ai is not left completely free, but instead is taken as a
linear combination of a basis, denoted with {Bj}j=1,...,m, i.e.,
Ai =

∑m
j=1 βijBj . The model parameters α = (α1, . . . , αNf

)
and β = (β11, . . . , βNfm) are chosen through a classical
supervised learning scheme with a ℓ2-norm loss function. Let
D = {(fs, gs)} be the dataset, with S elements, where every
element is a couple composed of a noisy observation fs and
its respective ground truth gs, then the result is a bilevel
optimization problem:argmin

α≥0,β
L(α, β) ≡

∑S
s=1 ∥u∗

s(α, β)− gs∥22

s. to u∗
s = argmin

u
E(u, α, β) ≡ D(u; fs) +R(u, α, β).

From now on, the parameters are condensed in one vec-
tor variable θ = (α1, . . . , αNf

, β11, . . . , βNfm) ∈ Rp for
simplicity. To solve such problem, one needs to find each
minimum us in order to compute the loss gradient either
through implicit differentiation or by applying the first-order
optimality conditions. Algorithm 1 sums up the procedure to
obtain the solution to the upper level problem.

Algorithm 1:
1 Data: D = {(fs, gs)}Ss=1, maxIter, θ(0)

2 for i = 0, . . . ,maxIter do
3 for s = 1, . . . , S do

Compute u∗
s = argmin

u
E(u, θ).

end
4 Compute ∇θL at θ(i).
5 Update the parameters to θ(i+1) by means of

∇θL(θ(i)).
end

This approach is indeed able to find a good set of parame-
ters, but as implemented in [6] it does have some issues. First,
in order to obtain ∇θL one would need to get the inverse of
∇2

uuE, i.e. the hessian matrix of the energy functional, but
nothing can be assumed on such matrix, in particular non-
singularity. Also, since the minimum of the energy functional
does not have a closed form, it needs to be approximated,
this means that further error is introduced in the loss gradient
computation.

Our Contribution
We work on both the upper level and the lower level problems.
For the loss minimization, due to its nature, we study the
performance of stochastic optimizers, which make the training
phase faster without a significant decrease in the performance
of the resulting model. As for the lower level problem, we
replace it with the unrolling of a gradient descent algorithm,
since, in this way, it does admit an explicit solution, and
the loss gradient can be computed exactly. Also, we avoid
inverting the hessian matrix, which helps in speeding up the
training of the model, and can be even more important if one
wants to use high dimensional images.

III. UNROLLING

In this section we delve deeper in the details of the unrolling
of an optimization algorithm. Such algorithm needs to be dif-
ferentiable, i.e., its general iteration needs to be differentiable,
otherwise we would not be able to compute the gradient loss
through the chain rule. Specifically, we use a simple gradient
descent scheme applied to the energy functional E, which
means that the generic new iterate is

u(k+1) = u(k) − λk∇uE(u(k)).

where λk is the steplength. The loss function is computed at
the image that it is obtained after applying K iterations of
the gradient descent starting from the noisy observed image.
By doing this, the loss gradient computation becomes exact
since we are not approximating the solution of the lower level
problem, but rather we are trying to make the best use of
a predetermined number of iterations. It also gives us the
possibility to learn the steplength sequence {λk}k at the same
time. Moreover, an additional advantage is that once the model
is trained, if we want to find the reconstruction to a new
noisy observation f̄ , we only need to apply K steps of the
gradient descent scheme, with the learned steplengths, to the
energy functional relative to f̄ . Note that we do not impose any
constraint other than non-negativity on λ, which has the effect
of not giving any guarantee on the decrease of E after each
gradient step. Finally, unlike in [20], our filters do not change
at each gradient descent iteration, which means that we are
still trying to emulate the minimum of the energy functional,
but with a smaller number of steps.

In order to simplify the notation, we now assume to have
just one training example and we define the variable λ =
(λ1, . . . , λK) ∈ RK . The bilevel problem that needs to be
solved is then:

argmin
θ,λ>0

L(θ, λ) ≡ 1
2∥u

∗(θ, λ)− g∥22

s. to u∗(θ, λ) = u(K) = u(K−1) − λK∇uE(u(K−1), θ)

with u(k) = u(k−1) − λk∇uE(u(k−1), θ) and u(0) = f.

Algorithm 2 describes the modified training scheme.
This time the loss gradient can be computed with the

backpropagation procedure described in [19]. First, we can
compute the gradient and the Hessian of the energy functional

∇uE(u, θ) = u− f +

Nf∑
i=1

αiA
T
i ϕ

′(Aiu),

∇2
uuE(u, θ) = I +

Nf∑
i=1

αiA
T
i DiAi,

where Di is the n × n diagonal matrix with ϕ′′(Aiu) on the
main diagonal.

We can also explicitly compute the partial derivatives of the
gradient w.r.t the parameters θ (but not λ, since the dependence
is not explicit):

∂∇uE(u, θ)

∂αi
= AT

i ϕ
′(Aiu) ∈ Rn,

∂∇uE(u, θ)

∂βij
= αi

(
BT

j ϕ
′(Aiu) +AT

i DjBju
)
∈ Rn.

At each step of the backpropagation we will need to apply the
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chain rule since each iterate depends on the parameters, hence
we need the partial derivatives of the generic u(k) w.r.t. the
steplength λj and the energy parameter θj :

∂ u(k+1)

∂λj
=

∂

∂λj

(
u(k) − λk∇uE(u(k), θ)

)
=

[
∂ u(k)

∂λj

]T (
In − λk∇2

uuE(u(k), θ)
)
− δkj∇uE(u(k), θ),

∂ u(k+1)

∂θj
=

∂

∂θj

(
u(k) − λk∇uE(u(k), θ)

)
=

[
∂ u(k)

∂θj

]T (
In − λk∇2

uuE(u(k), θ)
)
− λk

∂∇uE(u(k), θ)

∂θj
,

where δjk denotes the usual Kronecker delta.
We are now ready to describe a scheme to compute the loss

gradient. Starting from the derivative w.r.t. the parameter θj
we have:

∂ L(θ, λ)
∂θj

=

[
∂ u∗

∂θj

]T
(u∗ − g)

=

[
∂ u(K)

∂θj

]T (
In − λK∇2

uuE(u(K), θ)
)T

(u∗ − g)

− λK

[
∂∇uE(u(K), θ)

∂θj

]T
(u∗ − g);

by defining the following vectors

z(K+1) = u∗ − g,

w(K+1) = 0,

...

z(k) =
(
In − λk∇2

uuE(u(k), θ)
)T

z(k+1),

w(k) = −λk

[
∂∇uE(u(k), θ)

∂θj

]T
z(k+1) + w(k+1),

we can then arrive at the result of the chain rule as

∂ L(θ)
∂θj

=

[
∂ u(K)

∂θj

]T
z(K) + w(K)

...

=

[
∂ u(1)

∂θj

]T
z(1) + w(1)

= w(0).

One can repeat the same procedure to compute the gradient
w.r.t. λj , with the only exception of defining the vectors

v(K+1) = 0,

v(k) = −δkj∇uE(u(k), θ)T z(k) + v(k+1),

instead of the {w(j)}j=0,...K . By also noting that for every
j = 1, . . . ,K all but one of the v(k) are null, one can conclude
that

∂ L(θ, λ)
∂λj

= −∇uE(u(j), θ)T z(j+1).

Algorithm 2:
1 Data: (f, g), maxIter, K, θ(0), λ(0)

2 for i = 0, . . . ,maxIter do
3 for k = 1, . . . ,K do

Compute
u(k) = u(k−1) − λ

(i)
k ∇uE(u(k−1), θ(i)).

end
4 Compute ∇θL(θ(i), λ(i)) and ∇λL(θ(i), λ(i)).
5 Update the parameters to θ(i+1) and λ(i+1) by

means of ∇θL(θ(i), λ(i)) and ∇λL(θ(i), λ(i)).
end

IV. NUMERICAL EXPERIMENTS

For comparison purposes, we utilized the BSDS300 dataset
[17] as did the authors of [6], with a training set of 200
images patches of size 64×64 and a test set of 68 elements of
dimension 481×321. To generate the noisy counterpart, every
image was corrupted with additive white Gaussian noise with
σ = 25.

Regarding the sparsity inducing function and the filter basis,
we used, respectively, ϕ(t) = log(1 + t2) and the DCT basis
deprived of the first constant filter. These choices followed
the ones made by the authors of [6] in their work, which in
turn were motivated with statistical reasoning. In particular,
the filter basis forces the {ai}i=1,...,Nf

to be zero-mean.
To minimize the loss function, we employed various

stochastic optimizers (with and without variance reduction)
with different fixed learning rates to find the best parame-
ters for the model, both in the case where the lower level
problem is still a minimization problem and in the case
of the unrolling. We also tested, for reference, a couple of
deterministic schemes. When the lower level problem was
fully minimized, we computed the loss minimum with both
the L-BFGS algorithm [3]1 and the Scaled Gradient Projection
method [2] with a BFGS scaling matrix. On the other hand,
when we unrolled the gradient descent scheme, we only
used the SGP method. The number of outer iterations was
always set to a maximum of 500. As stopping criterion we
ceased the training when either the relative change in the loss
function value between two subsequent iterations was less than
10−5, or when the method exceeded the maximum number of
backtracking reductions in the linesearch step.

Full minimization case
Each lower level approximate solution was computed with
a L-BFGS algorithm. The algorithm was set to run for a
maximum number of 500 iterations (rarely reached) or until
∥∇uE(u)∥2 ≤ 10−3.

Regarding the stochastic approaches, we used the mini-
batch versions of stochastic gradient descent, vanilla [21] and
methods with variance reduction: momentum and AdaM [15],
processing 20 examples at a time and all with fixed learning
rate, for a total of 100 epochs. Where by epoch we mean an
entire view of the dataset in groups of 20 elements.

In figure 1 we have plotted the final results of the training.
The choice of the learning rate required a bit of tuning: for
too high values, the loss would have an oscillating behaviour,
while for too low ones, the convergence would be slow.

1Code downloaded from https://github.com/stephenbeckr/L-BFGS-B-C
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Fig. 1. Plot of the loss decrease by training with the stochastic schemes (only
the best learning rates for each scheme is plotted) as well as with the L-BFGS
algorithm.

TABLE I
Summary of the training results. The final loss value and the relative

average PSNR are computed after 100 epochs for all four schemes. For the
stochastic algorithms, only the best learning rates are reported. [6]

Optimizer Final Loss Value Average PSNR

L-BFGS 394090 28.61

SG 5e−8 399749 28.48

MOM 5e−8 400388 28.51

AdaM 1e−3 402266 28.50

Moreover, with no surprise, the inertial schemes perform better
in the very first epochs, but tend to stall rather quickly. Finally,
we also found that all three stochastic schemes performed
better than the deterministic approaches in the beginning,
which were able to find lower loss values only after more
than 50 epochs, and even then, after 100 epochs the gap was
not too wide, as the reader can see in table I.

For a matter of completeness, the L-BFGS scheme, after
500 iterations, yields a loss function value of 387930 and a an
average PSNR of 28.61 on the test set, a very similar result
to what the authors of [6] obtained (i.e., 388053 and 28.66
respectively), as well as all the other algorithms they compared
themselves with: BM3D [7], LSSC [16], GMM-EPLL [23],
FoE [12], KSVD [8] and GOAL [13].

Unrolling case
We performed the same experiments after replacing the lower
level problem with the unrolling of the gradient descent
algorithm for K = 5, 10, 15, 20 iterates. This time the best
performing stochastic scheme was the minibatch SG with fixed
learning rate λ = 1e−7, from start to finish. This is due to the
fact that the we had to reduce the steplength for the inertial
methods to avoid either divergence or early stalling.

As for the number of the inner iterates tested, as one would
suppose, the more the better. There is a significant increase in

(a) (b)

(c) (d)

Fig. 2. Example of a reconstruction: (a) ground truth; (b) noisy image; (c)
and (d) reconstructions obtained with the unrolling of respectively 10 and 15
steps of gradient descent, where the parameters of the model were learned
with SG.

the performance when using 5 inner iterates or 10, as well as
going from 10 to 15 (see figure 3). However, the same does
not apply with more than 15 iterates, i.e., the increase in the
quality of the reconstruction probably does not justify the extra
computational effort.

In table II we have reported the final numbers for the
unrolling experiments. Besides the stochastic schemes, we also
tested the quasi-Newton version of SGP described previously.
As in the full minimization case, the final performance for the
deterministic scheme is slightly better in the end, but it only
comes after a significant number of full iterations.

V. CONCLUSION

In this work we compared some variants of the classical
bilevel approach for learning the parameters of an optimal
regularization functional for image restoration. In particular,
we replaced the lower level problem with a fixed number
of steps of an optimization method, whose parameters are
then learned together with the regularization ones. Moreover,
we also compared the performances of different stochastic
optimization methods for the minimization of the upper level
problem.
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Fig. 3. Loss and average PSNR behaviour for the cases K = 10 and K = 15.
Loss optimizer: SG with λ = 1e−7

TABLE II
Summary of the training results when the lower level problem is replaced
by the unrolling of a gradient descent scheme for K = 10, 15 iterations.

The loss was optimized with the stochastic schemes (only the best learning
rates are reported) and a quasi-Newton deterministic algorithm.

Optimizer Final Loss Value Average PSNR

K = 10

Quasi-Newton SGP 387441 28.57

SG 1e−7 396262 28.52

MOM 1e−8 400209 28.46

AdaM 1e−4 401220 28.49

K = 15

Quasi-Newton SGP 386698 28.6

SG 1e−7 393670 28.55

MOM 1e−8 395823 28.52

AdaM 1e−4 398806 28.51

The numerical experiments show that the results of a
combination of the unrolling approach with the stochastic
optimization for the loss minimization are comparable with
those of the original bilevel approach in terms of accuracy. On
the other side, the unrolling approach leads to a computable,
explicit form of the gradient of the loss function and also to a
reduction of the complexity of the overall learning algorithm.
This is only the step one, as this formulation allows, in theory,
to add many other constraints on the parameters and the recon-
structed images, e.g. by applying a differentiable projection
at each gradient step to force the images to remain in a
certain range. In the future we would also like to investigate
the behaviour of this model in other contexts: on one hand,
if the lower level problem is solved as a full minimization
problem, then technically we are learning the image prior and

thus we should be able to use the regularizer, for instance,
in inpainting, deblurring and so on; on the other hand, if we
unroll an optimization algorithm, it is not as straightforward
and the regularizer may be problem-dependent.
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