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Abstract—Proximal methods have been extensively used
to find maximum a posteriori (MAP) estimates of unknown
images from degraded measurement. Recently, they have
been mixed with neural networks (NN) to further improve
the reconstruction quality. Two approaches can be distin-
guished: unfolded NNs, implementing a given iteration num-
ber of an optimisation algorithm, and plug-and-play (PnP)
algorithms, incorporating NNs in existing optimisation algo-
rithms. Unfolded NNs usually incorporate the measurement
operator in the learning process, which can be prohibitive
for applications with non-fixed measurement operators. PnP
do not have this drawback, but involved NNs still depend
on the underlying statistical models (e.g., higher noise
level on the measurements requires stronger denoisers). In
this work, we propose a PnP algorithm based on forward-
backward (FB) iterations, where the learned denoiser is
an unfolded NN based on dual-FB iterations. This NN is
built to mimic a Gaussian denoiser from a MAP viewpoint.
This allows us to introduce a regularisation parameter in
the model to tune the regularization strength, similarly to
standard variational approaches. This has the advantage of
making the learned NN more adaptive to a variety of inverse
problem statistical models, without requiring to train the NN
for different noise levels.

Index Terms—Dual forward-backward, unfolded network,
plug-and-play algorithm, inverse problem, image restora-
tion.

[. INTRODUCTION

Image restoration problems can often be formulated as
inverse problems, where the objective is to estimate an
unknown image # € RY from degraded measurements
y € RM, In this context, the model is given by

y=HT 4+ w, @8

where H: RY — RM is a linear measurement operator
and w € RM is a realization of an additive white Gaussian
noise, with standard deviation o > 0. This problem is
often solved by defining the estimate z € RY of T as
Z € Argmin 1||H96 —y|I> + A\g(Lz), (2)
zeRN 2
where ¢: RP =] — oo,+o00] is a proper lower-
semicontinuous convex regularization function incorpo-
rating a priori information on 7, L is a linear operator
from RY to R” , and p > 0 is a parameter tuning the
regularization strength.
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Problem (2) can be solved efficiently using optimisation
algorithms [1], [2]. When g is nonsmooth and proximable
(e.g., ¢1 norm composed with an orthonormal basis),
one of the simplest schemes to solve (2) is the forward-
backward (FB) algorithm [3]. It alternates between a gra-
dient step on the least-squares criterion and a proximity
step on g. When ¢ has a more sophisticated form (e.g.
total variation norm or hybrid regularization), one can
choose to use more advanced algorithms such as primal-
dual methods [2], [4], [5], or to use a dedicated algo-
rithm to compute sub-iteratively the associated proximal
operator within the FB algorithm. For the second option,
a common approach is to use the dual-FB algorithm [6],
designed to compute proximity operators.

Recently, performances of optimisation algorithms (for
reconstruction quality) have been improved by coupling
them with neural network (NN) models. The two main
approaches are (i) unfolded NNs, unrolling optimisation
algorithmscoupled with learnable operators over a fixed
number of iterations, and (ii) plug-and-play (PnP) al-
gorithms, injecting denoising NNs in optimisation algo-
rithms. Both the two approaches have shown their effi-
ciency over a number of applications (see, e.g., [7]-[9]).
For inverse problems, and particularly imaging problem:s,
PnP algorithms may be preferred over unfolded NNs, as
the involved NN is independent from the measurement
operator. Indeed, for unfolded NNs, the measurement
operator is included in the layers, hence in the training
process, which makes the trained network measurement-
specific. This drawback is not observed for PnP methods,
where NNs are denoising operators (for regularizing the
solution) not interfering with the measurement operator.
Nevertheless the involved NN still depends on the under-
lying statistical models, i.e., the noise standard deviation
0. To circumvent this difficulty, some networks can be
trained using variable training noise. Recently, DRUNet
[91, [10] was proposed to introduce the noise level as an
extra parameter and further improve its performance.

PnP algorithms were first proposed in [11], where the
authors replaced the proximity operator of the prior g
with a denoiser. If early methods relied on variational
denoisers, such as BM3D [12], later progress of NNs
in denoising tasks have allowed to boost reconstruction

EUSIPCO 2022



capabilities of PnP algorithms. Recently, much attention
has been drawn to convergence and stability properties
of PnP algorithms. We can draw two main approaches.
The first one consists in enforcing regularity constraint
on the NN of interest, in order to mimic the behavior of
resolvent operators and links with a monotone inclusion
problem [13]-[15]. The second approach consists in ex-
ploiting Tweedie’s formula, and relating the DNN with the
gradient of a prior function ¢ [10], [16], [17].

In this work, we propose a PnP algorithm, based on
FB iterations, where the proximity operator has been re-
placed by an unfolded dual-FB network, dubbed DFBNet.
The architecture of DFBNet mimics the structure of a
Gaussian denoiser from a maximum a posteriori (MAP)
perspective. Inspired by standard variational approaches,
we include a regularization parameter in the model. This
allows us to control in a flexible manner the strength of
the regularizer employed in the PnP algorithm.

The remainder of this paper is organized as follows: The
proposed approach is described in Section II. Simulation
results are provided in Section III. Finally, our conclusions
are given in Section IV.

II. PROPOSED METHOD

The architecture of the proposed DFBNet is grounded
on the structure of the dual-FB algorithm, to mimic a
Gaussian MAP denoising operator.

A. Dual-FB for denoising problem

Let # € RY be an original unknown image, and
2z = T + n be a noisy observation of Z, where n € RY
is a realization of a random normal i.i.d. variable with
zero-mean and standard deviation v > 0. Then we aim
to build a NN G such that G(z) ~ z*, where z* € RY is
a good estimate of Z. A possible estimate corresponds to
the penalized least squares estimate of Z, defined as

.1
B = ProX,op (2) = argmin oo — 2|+ ng(La),  (3)
S

where L: RV — RP represents some data transform,
n > 0 is the associated regularization parameter, and
C C RY is a nonempty, closed, convex set. Function g
constitutes a regularization term for the denoising prob-
lem. A standard strategy is to promote the sparsity in the
transformed space by setting g = || - ||1-

Let us define, for every u € RY and v € |0, +o0],

Ty~y,o(u)= (Id —proxmflg) (u+Lyproje (z —yL*u)) (4)

where proj. denotes the projection operator onto the
set C, and prox, ., denotes the proximity operator of
ny~'g. When g = | - |1, Id —prox, -, reduces to the
projection onto the hypercube [—m/_Y, ny~1]V. The dual-
FB algorithm [6], [18] for solving (3) then reads

Uup € RP,
For k=0,1,...
L Uk+1 = Tﬂ,’)’kvl‘(uk)'

)

where, for every k € N, ~ €]0,2||L||~2].

B. DFBNet architecture

The proposed DFBNet with K € N* layers and regu-
larization parameter 5 unrolls the dual-FB iterations of
Algorithm 5. One important features of this algorithm is
that it learns different linear operators L for each layer,
so adding much flexibility to the standard form of DFB.

Let L™ = (Ly)1<r<x where, for every k € {1,..., K},
Ly, is a linear operator from R to R” and ), = 1/||L4]|?.
DFBNet is expressed, for every u € R”, as

Tnv'Ylle (u)v (6)

where Y% = (y4)1<k<i and, for every k € {1,...,K},
Yk € [€,208k — €] with € > 0.

The asymptotic behaviour of the proposed network, i.e.
when the number of layers is very large, can be directly
deduced from [18, Thm. 3.7].

K
anK,LK (u,2) = Ty ye,Lic © 7 ©

Proposition 1 For every k € N, let L, = L: RN — RP,
Then we have

¥ =

2= e LGE e (o, 2)) ()

lim proje .

K—+4o00 (
for any initial choice for ug € RY.

Motivated by this result we define, for every ug € R”,

—K
Gn77K+17LK+1 (UO, Z)

= projc (Z - 7K+1L9}§(+1G1I7(77K,LK (uo, Z)) , (8)

where Li,1: RY — RP, and vx.1 € [¢, 28K 11 — €] with
€ >0 and BK-l-l = 1/||LK+1||2

Note that, when all layers have the same learned
linear operator, then the proposed approach could be
interpreted as a dictionary learning approach, while the
general case with multiple operators shows similarities
with deep dictionary learning [19].

C. PnP-FB algorithm

To find an estimate of T from the degraded measure-
ments y given in (1), we propose to use a PnP algorithm
based on FB iterations, where the proximity operator has
been replaced by DFBNet described in Section II-B. The
proposed iterative approach is then given by

X € RN,UO = LK+1J)0
For /=0,1,...
2o =x0 — peH* (Hre — y),
Ugr1 = Glﬁ)\y,\/K’LK (ue, ze),
Tyy1 = Proje (Zé - 7K+1L}+1W+1) )

9

where A > 0 and, for every £ € N, u, € [¢,2/|H|* —
€], with € > 0. The parameter A is used to control the
strength of DFNet, as regularization parameters are used
by traditional variational methods. A layer of the DFBNet
architecture is detailed in Figure 1.
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Fig. 1. Illustration of one layer of the DFBNet.

blur kernel

Fig. 2. Left: Convolution kernel. Right: Original test images = for the
inverse problem (1).

At iteration ¢ € N in Algorithm (9), DFBNet is initialized
with warm restart, i.e., with the dual variable u, obtained
at iteration £ — 1 (as output of DFNet). This is motivated
by the practical fact that when a dual-FB algorithm is used
within a FB algorithm, only a small number of iterations
is necessary to obtain the desired proximity operator, as
soon as a good input dual variable is provided to the dual-
FB algorithm (i.e., after few global iterations of the FB
algorithm). This is related to the monotonic behaviour of
the dual-FB algorithm on the dual variable.

Using Proposition 1 and [3], one can deduce the asymp-
totic behaviour of algorithm (9) in the particular case
when a unique linear operator is used for all the layers
of DFBNet, and a large number of layers is considered.

Proposition 2 Assume that Problem 2 has a solution. For
every k € {0,...,K + 1}, let Ly = L: RYN — RP, and
assume that K — +oo. Then (z,)¢en converges to a solution
7 to Problem (2).

III. APPLICATION TO IMAGE DEBLURRING
A. Simulation setting

We consider an inverse imaging problem of the
form (1), with RGB images of size N = 3 x N, where
H € RV*N ig a blurring operator with convolution kernel
displayed in Fig. 2, and ¢ € {0.03,0.05,0.08}. We evaluate
the results on five RGB images from BSD68 [20] shown
in Fig. 2.

A B C D E av. time

(s)

o =0.03 12.78 | 19.29 | 16.06 | 16.24 | 22.54
DFBNet 16.33 | 24.81 22.2 20.41 | 28.34 || 33.2
DRUNet 16.17 | 23.86 | 21.3 20.53 | 28.84 15.8
BM3D 17.38 | 25.52 | 22.28 | 21.86 | 29.45 || 833.8
DnCNN 13.05 | 18.36 | 15.55 | 13.03 | 18.44 13.9
[15] (v=0.021)|| 17.36 | 26.14 | 23.41 | 21.95 | 29.91 57.5
TGV 15.63 | 22.34 | 19.24 | 19.21 | 25.97 || 226.8

o =0.05 12.12 | 18.11 | 15.12 | 14.58 | 20.60
DFBNet 14.97 | 23.54 | 20.65 | 19.31 | 27.47 || 24.2
DRUNet 14.94 | 23.59 | 20.15 | 19.64 | 27.18 11.6
BM3D 15.86 | 23.57 | 20.62 | 20.02 | 28.00 || 440.4
DnCNN 9.96 13.56 | 11.35 9.11 14.16 || 19.88
[15] (v=0.035)|| 16.29 | 24.45 | 21.57 | 20.22 | 28.19 22.6
TGV 14.64 | 21.62 | 18.40 | 18.39 | 25.59 || 135.9

o = 0.08 10.82 | 16.11 | 13.44 | 12.10 | 17.85
DFBNet 14.49 | 22.75 | 19.68 | 18.71 | 26.93 32.7
DRUNet 14.63 | 23.13 | 19.65 | 18.92 | 27.37 13.8
BM3D 14.93 | 22.90 | 19.86 | 18.95 | 26.88 || 667.5
DnCNN 6.21 9.72 8.14 5.29 10.91 18.8
[15] (v=0.042)|| 13.72 | 21.24 | 18.67 | 16.22 | 24.72 33.0
TGV 13.92 | 20.88 | 17.61 | 17.06 | 24.39 || 145.4

TABLE 1

SNR (DB) RESULTS OBTAINED WITH THE DIFFERENT METHODS, ON THE
FIVE TEST IMAGES, FOR THREE DIFFERENT NOISE LEVELS
o € {0.03,0.05,0.08}. FOR EACH NOISE LEVEL, THE FIRST ROW
PROVIDES THE INPUT SNR OF y. THE LAST COLUMN GIVES THE AVERAGE
COMPUTING TIME PER ALGORITHM OVER THE FIVE IMAGES.

We compare our method with other PnP-FB algo-
rithms, where the denoising operator corresponds to ei-
ther DRUNet [9], BM3D [12], DnCNN without batch
norms (see, e.g., [21]), or DnCNN without batch norms
trained to be firmly nonexpansive for convergence guar-
anties [15]. Note that all these denoisers, apart from the
DnCNN from [15], can be applied to different statistical
models, without needing to train different NNs. We also
compare with a variational approach for RGB images
using FB algorithm with the proximity operator of the
total generalized variation (TGV) penalisation [22].

B. Training procedure

Let € = (Ti)i<ics be a dataset of I images with
values in [0, 1]. For every ¢ € {1,...,I}, we build a noisy
observation of z;, given by z; = T; +n;, where n; € RV is
a realization of a random normal i.i.d. variable with zero-
mean and standard deviation v;. We propose to train the
DFBNet as a denoiser. To this aim, we

I
e —K
minimize E ||G>\7, ~E+1 LK+ (LK+1Zi7 Zl) — Zl'||1, (10)
oK +1 Pt i s )

where 8% = (04)1<r<x 11 are the learnable parameters

of the convolutional operators LX*!, and the definition
of @f\inKH’LKH is given in (8). We choose C = [0,1]%,
i = v;, and, for every ke {0, - ,K}, Y = 18/||Lk||2
We use Adam [23] to solve (10) on pairs of ground
truth/noisy patches of size 50 x 50 built on the 50,000
test images from ImageNet. We consider K = 20 layers,
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y (o0 =0.08)
Fig. 3. Results obtained from FB iterations with different denoisers, for two images and two noise levels (o = 0.03 and o = 0.08). SNR values
for these results are given in Table I, for image C with ¢ = 0.03 (top) and image B with o = 0.08 (bottom).

[15] (v = 0.042)

P = 64 x N, batches of size 100, the learning rate is set
to 102 and is divided by 2 every 10* iterations.

The standard DnCNN and DFBNet are trained on
variable noise, considering random values of v; ~
U([0,0.05]) during the training procedure. The DnCNN
from [15] is trained using three fixed noise levels v €
{0.021,0.035,0.042}, to match the three noise levels in
the inverse problem (1) with ¢ € {0.03,0.05,0.08}, re-
spectively. These values are observed to be the best to
approximate the noise level of the input of the network in

DnCNN TGV

the PnP algorithm (see Section II-B). For DRUNet, we use
the trained NN provided by the authors [9] on GitHub.

C. Simulation results

We run the FB algorithm for the settings and denoisers
described in Section III-A. The proposed DFBNet as well
as DRUNet, BM3D, and the proximity operator of TGV
require to choose a regularization parameter. For DFBNet,
DRUNet and BM3D, this parameter should correspond to
the noise level of the input noisy variable (i.e., in FB
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iterations, it is the variable obtained after a gradient
step). This is determined empirically by taking the pa-
rameters providing the best Signal to Noise Ratio (SNR)
on all the images for all methods, per noise level o.
For the considered o € {0.03,0.05,0.08}, we obtain
A € {0.021,0.035,0.042}, respectively. For the proximity
operator of TGV, the parameters have been manually cho-
sen to obtain the best SNR. The two other NNs (DnCNN
and [15]) do not have regularization parameters.

The stopping criterion is adapted to the considered
method, depending whether it benefits from convergence
guaranties or not. The standard FB with TGV regulariza-
tion and the PnP from [15] both offer strong convergence
guarantees. For both these two methods, the algorithm
is stopped when ||zy — zo_1|| < 107*||z¢| holds, where
(z¢)een is the sequence generated by the either the two
algorithms. The three other PnP-FB (grounded on DFBNet,
DRUNet and BM3D) benefit from weaker theoretical guar-
antees. We then propose to stop these algorithms as soon
as a non-monotonic behaviour on the generated sequence
(xg)geN is observed, ie., if ng_»,_l — J)gH > sz — J)g_lH.

The SNR results for the different methods, in the
different settings are given in Table I. We also provide
the average time (in s.) necessary to reach the solution
obtained from the different methods. Results delivered
by the different approaches for two settings are also
provided in Fig. 3 (im. C with ¢ = 0.03, and im. B
with ¢ = 0.08). We observe that DFBNet provides similar
results to DRUNet. BM3D generally gives slightly better
SNR values, at the price of high computational time
(more than 20 times larger). The convergent DnCNN [15]
provides better results for lower noise levels. However,
unlike the proposed approach, [15] necessitates to train
different networks when the noise level changes. In addi-
tion, training [15] is much heavier than DFBNet, due to
the regularization used to obtain a firmly non-expansive
network, and additional pretraining. Visual inspection on
the top images of Fig. 3 shows that, even if the SNR value
is lower with DFBNet than [15], the accuracy of the detail
estimate is similar. Both the classical DnCNN and proximal
approaches are outperformed by the other methods.

IV. CONCLUSION

In this work we have proposed to pair an unfolded
dual FB, dubbed DFBNet, with a FB-PnP algorithm. The
proposed approach can be adapted to different statistical
models, thanks to the use of a regularization parametet,
included in the network, and inspired from traditional
variational approaches. We have shown through simula-
tion on an image deblurring problem that DFBNet is com-
petitive with state-of-the-art denoisers for PnP algorithms,
while being adjustable to the noise level.
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