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Canada

Eric GRANGER
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Abstract—This study investigates imposing hard inequality
constraints on the outputs of convolutional neural networks
(CNN) during training. Several recent works showed that the
theoretical and practical advantages of Lagrangian optimization
over simple penalties do not materialize in practice when dealing
with modern CNNs involving millions of parameters. Therefore,
constrained CNNs are typically handled with penalties. We
propose log-barrier extensions, which approximate Lagrangian
optimization of constrained-CNN problems with a sequence of
unconstrained losses. Unlike standard interior-point and log-
barrier methods, our formulation does not need an initial feasible
solution. The proposed extension yields an upper bound on the
duality gap—generalizing the result of standard log-barriers—
and yielding sub-optimality certificates for feasible solutions.
While sub-optimality is not guaranteed for non-convex problems,
this result shows that log-barrier extensions are a principled
way to approximate Lagrangian optimization for constrained
CNNs via implicit dual variables. We report weakly supervised
image segmentation experiments, with various constraints, show-
ing that our formulation outperforms substantially the existing
constrained-CNN methods, in terms of accuracy, constraint
satisfaction and training stability, more so when dealing with
a large number of constraints.

Index Terms—Constrained CNNs, image segmentation

I. INTRODUCTION

Imposing prior knowledge in the form of hard constraints
on the output of deep convolutional neural networks (CNNs) is
useful in a breadth of learning and vision problems. For exam-
ple, in semi- and weakly-supervised learning, structured pre-
diction or multi-task learning, a set of natural prior-knowledge
constraints is available. Such additional knowledge may come
from domain experts, for example. In semi-supervised image
segmentation, for instance, several recent works [7], [12],
[18] showed that imposing domain-specific knowledge on
the network’s predictions at unlableled data points acts as a
powerful regularizer, boosting significantly the performances
when the amount of labeled data is limited. Specifically, the
authors of [7], [18] added priors on the sizes of the target
regions, achieving good performances with only fractions of
labels. Such constraints are highly relevant in medical imaging
[10], and can mitigate the lack of full annotations1. Similar ex-
perimental observations were made in other application areas

1In semantic segmentation, full supervision involves annotating all pixels
in each training image, a problem amplified when annotations require expert
knowledge or involves volumetric data as in medical imaging.

of semi-supervised learning. For example, in natural language
processing, the authors of [12], showed that embedding prior-
knowledge constraints on unlabled data can yield significant
boosts in performances. 3D human pose estimation from a
single view [11] is another application where task-specific
prior constraints arise naturally, e.g., symmetry constraints
encoding that the two arms should have the same length.

As pointed out in several studies [7], [11], [12], [14],
[15], [18], imposing hard constraints on modern deep CNNs
involving millions of parameters is challenging, even when
the constraints are convex with respect to the outputs of the
network. In modern deep networks, constraints are commonly
handled with penalties for their simplicity, and despite their
well-known limitations. Standard Lagrangian-dual optimiza-
tion has been largely avoided and, as discussed in [11], [14],
[15], this might be explained by the computational complexity
and stability/convergence issues caused by alternating between
stochastic optimization and explicit dual updates/projections.

Interior-point and log-barrier methods can approximate La-
grangian optimization by starting from a feasible solution and
solving unconstrained problems, while completely avoiding
explicit dual steps and projections. Unfortunately, despite their
well-established advantages over penalties, such standard log-
barriers were not used before in deep CNNs because finding
a feasible set of initial network parameters is not trivial, and
is itself a challenging constrained-CNN problem.

We propose log-barrier extensions, which approximate La-
grangian optimization of constrained-CNN problems with a
sequence of unconstrained losses, removing the need for an
initial feasible set of network parameters. The extensions yield
a duality-gap bound, which generalizes the standard duality-
gap result of log-barriers, yielding sub-optimality certificates
for feasible solutions in the case of convex losses. While sub-
optimality is not guaranteed for non-convex problems, this
result shows that log-barrier extensions are a principled way
to approximate Lagrangian optimization for constrained CNNs
via implicit dual variables. This addresses the well-known
limitations of penalty methods and, at the same time, removes
the explicit dual updates of Lagrangian optimization. We
report comprehensive weakly supervised segmentation experi-
ments, with various constraints, showing that our formulation
outperforms the existing constrained-CNN methods, in terms
of accuracy, constraint satisfaction and training stability, more
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so when dealing with a large number of constraints.

II. METHOD

A. Preliminaries

Let D = {I1, ..., IN} denotes a partially labeled set of N
training images, and Sθ = {s1θ, ..., sNθ } denotes the associated
predicted networks outputs in the form of softmax probabili-
ties, for both unlabeled and labeled data points, with θ the
neural-network weights. These could be class probabilities
or dense pixel-wise probabilities in the case of semantic
image segmentation. We address constrained problems of the
following general form:

min
θ

E(θ) (1)

s.t. f1(s
n
θ) ≤ 0, n = 1, . . . , N,

. . .

fP (s
n
θ) ≤ 0, n = 1, . . . , N.

where E(θ) is some standard loss over the set of labeled data
points—e.g., cross-entropy—and each fi is some differentiable
function, which we want to constrain for each data point n.
Inequality constraints of the general form in Eq. (1) can embed
very useful prior knowledge on the network’s predictions for
unlabeled pixels. Assume, for instance, in the case of image
segmentation, that we have prior knowledge about the size
of the target region (i.e., class) k. Such a knowledge can be
in the form of lower or upper bounds on region size, which
is common in medical image segmentation problems [2], [7],
[13]. In this case, In : Ω ⊂ R2 → R could be a partially
labeled or unlabeled image, with Ω the spatial support of the
image, and snθ ∈ [0, 1]K×|Ω| its predicted mask. This matrix
contains the softmax probabilities for each pixel p ∈ Ω and
each class k, which we denotes snk,p,θ. A constraint in the form
of fi(snθ) =

∑
p∈Ω s

n
k,p,θ − a ≤ 0 enforces an upper limit a

on the size of target region k.

B. Log-barrier extensions

We propose the following unconstrained loss for approxi-
mating Lagrangian optimization of constrained problem (1):

min
θ

E(θ) +
P∑
i=1

N∑
n=1

ψ̃t (fi(s
n
θ)) , (2)

where ψ̃t is our log-barrier extension, which is convex,
continuous and twice-differentiable:

ψ̃t(z) =

{
− 1

t log(−z) if z ≤ − 1
t2 ,

tz − 1
t log(

1
t2 ) +

1
t otherwise.

(3)

The standard log-barrier ψt and our proposed extension ψ̃t are
depicted in sub-Figures 1a and 1b respectively. Similarly to the
standard log-barrier, when t→ +∞, our extension (3) can be
viewed a smooth approximation of hard indicator function H .
However, a very important difference is that the domain of our
extension ψ̃t is not restricted to feasible points θ. Therefore,
our approximation (2) removes completely the requirement for
explicit Lagrangian-dual optimization for finding a feasible set

(a) Standard log-barrier (b) Log-barrier extension

Fig. 1: Plots of the functions, for varying t.

of network parameters. In our case, the inequality constraints
are fully handled within stochastic optimization, as in standard
unconstrained losses, avoiding completely gradient ascent it-
erates and projections over explicit dual variables.

In our approximation in Eq. (2), the Lagrangian dual
variables for the initial inequality-constrained problem of
(1) are implicit. We show the following duality-gap bound,
which yields sub-optimality certificates for feasible solutions
of our approximation in (2). This result2 can be viewed as
an extension of the standard result in [1][page 566], which
expresses the duality-gap as a function of t for the log-barrier
function.

Proposition 1. Let θ∗ be the solution of problem (2) and
λ∗ ∈ RP×N the corresponding vector of implicit Lagrangian
dual variables given by:

λ∗i,n =

{
− 1

tfi(snθ∗ )
if fi(snθ∗) ≤ − 1

t2 ,

t otherwise.
(4)

Then, we have the following upper bound on the duality gap
associated with primal θ∗ and implicit dual feasible λ∗ for
the initial inequality-constrained problem (1):

E(θ∗)− g(λ∗) ≤ PN/t.

Proof:
Let θ∗ be the solution of problem (2) and λ∗ ∈ RP×N the

corresponding vector of implicit dual variables given by (4).
We assume that θ∗ verifies approximately3 the optimality

condition for a minimum of (2):

∇E(θ∗) +

P∑
i=1

N∑
n=1

ψ̃′
t (fi(s

n
θ∗))∇fi(snθ∗) ≈ 0 (5)

It is easy to verify that each dual variable λ∗i,n corresponds to
the derivative of the log-barrier extension at fi(Sθ∗):

λ∗i,n = ψ̃′
t (fi(s

n
θ∗))

2The result applies to the general context of convex optimization. In deep
CNNs, of course, a feasible solution of our approximation may not be unique
and is not guaranteed to be a global optimum as E and the constraints are
not convex.

3When optimizing unconstrained loss via stochastic gradient descent
(SGD), there is no guarantee that the obtained solution verifies exactly the
optimality conditions.
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Therefore, Eq. (5) means that θ∗ verifies approximately the
optimality condition for the Lagrangian corresponding to the
original inequality-constrained problem in Eq. (1) when λ =
λ∗:

∇E(θ∗) +

P∑
i=1

N∑
n=1

λ∗i,n∇fi(snθ∗) ≈ 0 (6)

It is also easy to check that the implicit dual variables defined
in (4) corresponds to a feasible dual, i.e., λ∗ > 0 element-
wise. Therefore, the dual function evaluated at λ∗ > 0 is:

g(λ∗) = E(θ∗) +

P∑
i=1

N∑
n=1

λ∗i,nfi(s
n
θ∗),

which yields the duality gap associated with primal-dual pair
(θ∗,λ∗):

E(θ∗)− g(λ∗) = −
P∑
i=1

N∑
n=1

λ∗i fi(s
n
θ∗). (7)

Now, to prove that this duality gap is upper-bounded by PN/t,
we consider three cases for each term in the sum in (7) and
verify that, for all the cases, we have λ∗i,nfi(s

n
θ∗) ≥ − 1

t .
• fi(s

n
θ∗) ≤ − 1

t2 : In this case, we can verify that
λ∗i,nfi(s

n
θ∗) = − 1

t using the first line of (4).
• − 1

t2 ≤ fi(s
n
θ∗) ≤ 0: In this case, we have λ∗i,nfi(s

n
θ∗) =

tfi(s
n
θ∗) from the second line of (4). As t is strictly

positive and fi(s
n
θ∗) ≥ − 1

t2 , we have tfi(s
n
θ∗) ≥ − 1

t ,
which means λ∗i,nfi(s

n
θ∗) ≥ − 1

t .
• fi(s

n
θ∗) ≥ 0: In this case, λ∗i,nfi(s

n
θ∗) = tfi(s

n
θ∗) ≥ 0 >

− 1
t because t is strictly positive.

In all the three cases, we have λ∗i,nfi(s
n
θ∗) ≥ − 1

t . Summing
this inequality over i gives:

−
P∑
i=1

N∑
n=1

λ∗i,nfi(s
n
θ∗) ≤

PN

t
.

Using this inequality in (7) yields the following upper bound
on the duality gap associated with primal θ∗ and implicit dual
feasible λ∗ for the original inequality-constrained problem:

E(θ∗)− g(λ∗) ≤ PN/t.

This bound yields sub-optimality certificates for feasible
solutions of our approximation in (2). If the solution θ∗ that
we obtain from our unconstrained problem (2) is feasible, i.e.,
it satisfies constraints fi(snθ∗) ≤ 0, ∀i,∀n, then θ∗ is PN/t-
suboptimal for the original inequality constrained problem:
E(θ∗) − E∗ ≤ PN/t. In deep CNNs, of course, a feasible
solution for our approximation may not be unique and is not
guaranteed to be a global optimum as E and the constraints
are not convex.

From Proposition 1, the following important fact follows
immediately: If the solution θ∗ that we obtain from uncon-
strained problem (2) is feasible and global, then it is PN/t-
suboptimal for constrained problem (1): E(θ∗)−E∗ ≤ PN/t.

Similarly to the standard log-barrier algorithm, we use a
varying parameter t. At training time, we optimize a sequence
of losses of the form (2) and increase gradually the value t by a
factor µ. The network parameters obtained for the current t and
epoch are used as a starting point for the next t and epoch. This
effectively “raises” the barrier over time. We can summarize
the fundamental differences between our log-barrier extension
and a standard penalty function as follows:

A penalty does not act as a barrier near the boundary of
the feasible set, i.e., a satisfied constraint yields null penalty
and gradient. Therefore, at a given gradient update, there
is nothing that prevents a satisfied constraint from being
violated, causing oscillations between competing constraints
and making the training unstable. On the contrary, the strictly
positive gradient of our log-barrier extension gets higher when
a satisfied constraint approaches violation during optimization,
pushing it back towards the feasible set.

Another fundamental difference is that the derivatives of our
log-barrier extensions yield the implicit dual variables in Eq.
(4), with sub-optimality and duality-gap guarantees, which is
not the case for penalties. Therefore, our log-barrier extension
mimics Lagrangian optimization, but with implicit rather than
explicit dual variables.

III. EXPERIMENTS

Most of the existing methods—and the proposed log-
barrier—are compatible with any differentiable function fi,
including non-linear and fractional terms, as in Eqs. (8) and (9)
introduced further in the paper. However, we hypothesize that
our log-barrier extension is better for handling the interplay
between multiple competing constraints. To validate this hy-
pothesis, we compare all strategies on the image segmentation
tasks with constraints related to region size and location. As
baselines we compare to a direct Lagrangian method, and a
recent modification of the Lagrangian [12].

a) Region-size constraint: We define the size (or volume)
of a segmentation for class k as the sum of its softmax
predictions over the image domain:

Vn
k,θ =

∑
p∈Ω

snk,p,θ. (8)

We use the following inequality constraints on region size:
0.9τVn

k
≤ Vn

k,θ ≤ 1.1τVn
k

, where, similarly to the experiments
in [7], τVn

k
=

∑
p∈Ω y

n
k,p is determined from the ground truth

yn of each image.
b) Region-centroid constraints: The centroid of the pre-

dicted region can be computed as a weighted average of the
pixel coordinates:

Cn
k,θ =

∑
p∈Ω s

n
k,p,θcp∑

p∈Ω s
n
k,p,θ

, (9)

where cp ∈ N2 are the pixel coordinates on a 2D grid.
We constrain the position of the centroid in a box around
the ground-truth centroid: τCn

k
− 20 ≤ Cn

k,θ ≤ τCn
k
+ 20,

with τCn
k

=
∑

p∈Ω yn
k,pcp∑

p∈Ω yn
k,p

corresponding to the bound values
associated with each image.
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Fig. 2: Full mask of the prostate (left) and the box annotations
(right). The background is in red and the foreground in green.
No color means that no information is provided.

c) Bounding box tightness prior: This prior [5], [8]
assumes that any horizontal or vertical line inside the bounding
box of an object of class k will eventually cross the object.
This can be generalized with segments of width w inside the
box, that will cross at least w times the object. This prior can
be easily reformulated as constraints. If Sn

L := {snl } denotes
the set of parallel segments to the sides of the bounding box
for sample n, the following set of inequality constraints is
trivial to define:∑

p∈snl

ynk,p ≥ w ∀snl ∈ Sn
L,∀n ∈ D. (10)

If we define the inside of the bounding box as ΩF , and the
outside as ΩB (such as Ω = ΩF ∪ΩB and ΩF ∩ΩB = {∅}),
we can define two other useful constraints for each image:∑

p∈ΩB

snk,p,θ ≤ 0 ∀n ∈ D, (11)∑
p∈Ω

snk,p,θ ≤ |ΩF | ∀n ∈ D. (12)

This setting is a good benchmark to evaluate the interplay of
numerous, competing constraints simultaneously.

A. Datasets and evaluation metrics

Experiments were performed on two different segmentation
scenarios using synthetic and medical images.

Synthetic images: We randomly generated a synthetic
dataset composed of 1100 images with two different circles of
the same size but different intensity values, where the darker
circle is the target region (Fig. 3, first column). Furthermore,
different levels of Gaussian noise were added to the images.
We employed 1000 images for training and 100 for validation.
We test the combinations of contraints (8) and (9).

Medical images: We use the dataset from the MICCAI
2012 prostate segmentation challenge [9], PROMISE12. This
dataset contains Magnetic Resonance (MR) images from 50
patients, from which we employ 10 patients for validation
and use the rest for training. We test the combinations of
constraints (10), (11) and (12), with bounding boxes derived
from the ground truth (illustrated in Figure 2).

Evaluation: We resort to the common Dice index (DSC)
= 2|S

⋂
Y |

|S|+|Y | to evaluate predicted segmentations. Furthermore,
we evaluate the effectiveness and stability of the constrained
optimization methods. To this end, we first compute at each
epoch the percentage of constraints that are satisfied. Second,

TABLE I: Mean DSC and standard deviation of the last 10
epochs on the validation on the toy example and PROMISE12
datasets.

Method Synthetic dataset PROMISE12

Standard Lagrangian 0.005 (0.014) 0.000 (0.000)
ReLU Lagrangian [12] 0.798 (0.006) 0.000 (0.000)
Penalty [4], [7] 0.712 (0.022) 0.000 (0.000)
Log-barrier extensions (ours) 0.945 (0.001) 0.813 (0.024)
Full supervision 0.998 (0.000) 0.880 (0.001)

we measure the stability of the constraints, i.e., the percentage
of constraints satisfied at epoch t that are still satisfied at epoch
t+ 1. And last, we measure the time needed to train a single
epoch, including the dual update for the Standard Lagrangian
and ReLU Lagrangian [12].

The code is publicly available4, and contains all relevant
implementation details, hyper-parameters, and running scripts
for easier reproducibility.

B. Results

a) Quantitative results: Results in terms of DSC are
reported in Table I. The first thing we can observe on the
synthetic dataset is that the standard Lagrangian, despite the
introduction of a dedicated learning rate for its λ update, is
not able to learn when multiple constraints are in competition,
i.e, DSC of 0.005 in the synthetic example. In addition, the
ReLU Lagrangian approach proposed by [12] can better handle
multiple constraints than a simple penalty [4], [7].

With the high number of constraints and trivial solutions to
balance, the proposed log-barrier extension learns successfully
based on the information given by the constraints, compared
to the other methods, achieving the best DSC across the two
settings, and, more importantly, is the only method managing
to predict non-empty segmentations on the medical task.

The very poor performance of penalty-based methods can
be explained by the high-gradients generated when constraints
are not satisfied, which leads to big and simplistic updates.

Fig. 3: Results on the synthetic dataset (background in red and
foreground in green).

b) Qualitative results: A visual comparison on the syn-
thetic dataset is depicted in Figure 3. In this figure we can first
observe that standard Lagrangian generates noisy segmenta-
tions, which is in line with the quantitative results reported
in Table I. Both ReLU Lagrangian [12] and penalty-based
methods obtain better target segmentations. Nevertheless, they

4https://github.com/LIVIAETS/extended logbarrier
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cannot handle efficiently the interplay between multiple con-
straints. Meanwhile, the proposed extended log-barrier demon-
strates a strong ability to handle several constraints simulta-
neously, which is reflected in the circle segmentation close to
the ground truth.

c) Constraints satisfaction and stability: The metrics
over training epochs are shown in Fig. 4. We can notice that
on top of the better absolute performances, the proposed log-
barrier extension is also more stable during training, both in
performance and constraints satisfaction.

Fig. 4: Constraints satisfaction, stability and DSC evolution
on different settings. Best viewer in colors.

d) Computational cost and efficiency: Penalties and the
proposed log-barrier extension have negligible cost compared
to optimizing the base-loss E(θ) alone (up to 5% slowdown
when the number of constraints becomes very high). In
contrast, Lagrangian methods incur in higher computational
cost. For example, in the standard and ReLU Lagrangian, it
amounts to nearly a 25% slowdown (due to the extra loop over
the training set to perform the λ update).

IV. CONCLUSION

We proposed log-barrier extensions, which approximate
Lagrangian optimization of constrained-CNN problems with a
sequence of unconstrained losses. Our formulation relaxes the
need for an initial feasible solution, unlike standard interior-
point and log-barrier methods. This makes it convenient for
deep networks. We also provided an upper bound on the dual-
ity gap for our proposed extensions, thereby generalizing the
duality-gap result of standard log-barriers and showing that our
formulation has dual variables that mimic implicitly (without
dual projections/steps) Lagrangian optimization. Therefore,
our implicit Lagrangian formulation can be fully handled
with SGD, the workhorse of deep networks. We reported
constrained-CNN experiments, showing that log-barrier exten-
sions outperform several other types of Lagrangian methods
and penalties, in terms of accuracy and training stability. Log-
barrier extensions can be useful in breadth of problems in
vision and learning, where constraints occur naturally. This
include, for instance, adversarial robustness [16], stabilizing
the training of GANs [3], domain adaptation for segmentation
[17], pose-constrained image generation [6], 3D human pose
estimation [11], deep reinforcement learning [4] and natural

language processing [12]. To our knowledge, those constraints
are typically handled with basic penalties; it will therefore be
interesting to investigate log-barrier extensions in these diverse
contexts.
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