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Abstract—It is widely expected that 6G networks will rely
on Unmanned Aerial Vehicles (UAVs) acting as flying Base
Stations (BSs) to provide a wide range of services that current
networks cannot handle. One of the major trends deals with
Vehicle-To-Everything (V2X) communications, where vehicles
must be connected to the network to offer applications such as
advanced driving and extended sensing. In this context, vehicles
could deeply count on flying BS to increase the throughput
or reduce the experienced latency, thus satisfying such services
constraints. Consequently, path planning must be designed so
that UAVs can keep stable links with moving vehicles. In this
sense, Reinforcement Learning (RL) techniques are becoming
the main enabler for solving such problem, since they offer the
possibility to learn how to act in an environment with little prior
information, given that full knowledge of the scenario is usually
not available. In this paper, we present a RL-based approach to
solve the path planning problem in a vehicular scenario, where
UAVs, exploiting beamforming, are required to follow as long as
possible moving cars. Different RL architectures, as well as a
benchmark solution not using RL, are compared to select the
best strategy maximising the sum throughput.

I. INTRODUCTION

With the advent of 5-th Generation (5G) and beyond net-
works, novel advanced paradigms target network scalability
and seamless communications. Therefore, the use of UAVs as
mobile BSs (i.e., Unmanned Aerial Base Stations (UABSs)),
that may fly on-demand exactly when and where service is
needed [1], [2], arises high interest and expectations. Among
others, the use of UABSs is gaining attention in the context
of future Vehicle-To-Everything (V2X) applications [?], [3],
[4]. In fact, thanks to the mobility degree of freedom, a
UABS may improve link robustness and network adaptability
to the dynamics of a vehicular scenario. In this context,
the design of the trajectory assumes a fundamental role.
Since the continuous variation in time of the environment
constitutes a critical challenge, recent trends for UAV tra-
jectory design show that the use of Reinforcement Learning
(RL) is particularly helpful [5]. Indeed, solving mathematical
optimization models is not possible when a-priori input data is
unavailable or requires too high complexity and computation
time. To solve such problems, RL allows instead to learn in an
environment with little prior information available. As it will
be discussed later, RL balances the environment exploration
done by an agent with the exploitation of acquired knowledge
through time, aspects that allow to learn the dynamics of a
vehicular scenario.

During the latest years, the navigation problem has become
increasingly interesting and it has reached a new level of

complexity in case the target of UAV service is moving itself.
Authors in [6] adopt Q-learning for the trajectory control part,
but the movement of the UAV is limited to the selection of
a lane and the movement forward or backward on it. In [7],
Authors employ Q-learning for 3D trajectories in a multi-UAV
environment where pedestrian users are moving. In this case,
the main goal of the agent is to keep as many users as possible
connected to the network during roaming occasions. Authors
in [8] study the optimal positions of UAV BSs in a sparse
highway with a multi agent Q-learning algorithm. However,
this work focuses on the positioning of the UAVs rather than
the trajectory design. Moving vehicles are considered in [9],
where Authors propose a RL approach for the minimization of
the number of UAVs accounting for their energy consumption.
In this case, the trajectory planning turns out to be very simple
since an highway scenario is considered. In [10], authors
present a path planning strategy based on users’ initial position
as well as next location prediction. To do so, they exploit
Q-Learning for the trajectory design, which is fed with the
prediction of users’ movement generated according to Global
Positioning System coordinates supposed to be available by
mining data from social networks.

Differently from the works cited above, we consider a urban
scenario with a city map, where vehicular users drive only on
available roads, exploiting more complex Q-Learning based
algorithms. Here, the UAV learns how to track the moving
users to offer them service during their entire traveled path,
rather than finding an optimal placement. A dynamic trajectory
indeed allows the UAV to provide vehicles seamless access to
the network. In addition, we are able to show that introducing
beamforming and feeding beams-related information as a state
input to the RL problem can be beneficial for the training
performance. In fact, this provides the UAV with better knowl-
edge regarding the vehicles location and the direction they are
pursuing, improving the overall performance of the algorithm.

The remainder of the paper is organized as follows; the
system model and the Machine Learning (ML) problem defini-
tion are presented in Sections II and III, respectively, whereas
Section IV presents the obtained results. Finally, Section V
concludes the paper.

II. SYSTEM MODEL

A. Reference Scenario

We assume one UABS, u, and a set of vehicles, denoted as
Ground User Equipments (GUEs), g, belonging to the set G,
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are present in the scenario of interest. The UABS is equipped
with a radio antenna system enabling beamforming for the
mmWave frequency bands; its position is given by [xt, yt, h],
with constant altitude h, at time instant t. We assume GUEs
want to implement an extended sensing application, according
to which, each vehicle wants to exchange data gathered
through local sensors or video with other vehicles nearby [11].
To do this each vehicle sends V2X messages (e.g., Cooper-
ative Awareness Message (CAM) and Collective Perception
Message (CPM)), to the network, every tmsg seconds, with
tmsg ∈ [0.1, 1] seconds. In this paper we set tmsg = 1 s. Cars
are moving in a urban environment, that in our case is a district
of the city of Bologna (Italy). This city map is characterized
by many possible paths each vehicle can take; their generation
is based on Simulation of Urban MObility (SUMO), an open
source traffic simulator [12] (an example is provided in Fig.
1). In order to improve the system performance, the UABS is
expected to identify the most suitable trajectory to maximize
network service.

Since the RL algorithm used for this work is based on
a discrete set of actions, as it will be discussed in Section
III-A, the UABS can move only in predetermined directions.
To model this behaviour, the map (1460 x 760 m2) is divided
into a squared grid-world with vertices corresponding to the
possible positions. The sides length of such square depends
on the UABS speed, so the slower is the UABS, the more
granular the grid will be (in our simulations, we obtain 2628,
1176 and 666 possible positions for the slowest, the medium
and the fastest settings, respectively).

Fig. 1: Example: three possible paths (yellow, blue, red) taken
by GUEs.

B. Channel Model

We assume a mmWave communication system working at
a carrier frequency fc = 30 GHz. Accordingly, the channel
model adopted is provided by the 3rd Generation Partnership
Project (3GPP) in [13], considering, specifically, the Urban
Macro (UMa) scenario (more details in Chapter 7.4 of [13]).
The model introduces probability for a link to be in Line-
of-Sight (LoS) conditions (see Table 7.4.2-1 of [13]), pL, that
depends on the projected 2D terminal distance from the UABS,
d2D and user terminal height, hUT. Therefore, the channel
losses, lL and lN for LoS and Non Line-of-Sight (NLoS),
respectively, depend also on other parameters characterizing
the propagation link, such as the terminal height, hUT, the
UABS height, h, and the 3D distance between the UABS
and the terminal. Slow fluctuations due to shadowing are

considered with parameters σL = 4 and σN = 6 (dB),
respectively. Consequently, each link in the scenario has a
channel loss (in dB scale) PL = lL+σ∗

L with probability pL or
PL = lN+σ∗

N with a probability 1−pL, where σ∗
L and σ∗

N are
the shadowing samples taken from the Gaussian distributions
σ∗
L ∼ N{0, σL} and σ∗

N ∼ N{0, σN}, respectively. where σ∗
L

and σ∗
N are the samples taken from the Gaussian distributions

N ∼ {0, σL} and N ∼ {0, σN}, respectively.
Finally, we define the Signal-to-Noise Ratio (SNR) in dB

as:
SNR = [Ptx +Gtx +Grx − PL]− Pnoise (1)

where Ptx is the transmitted power in dBm, Gtx and Grx

represent the gain in transmission and reception, respectively,
in dB and Pnoise is the noise power.

C. Beamforming

Tackling a 6G network scenario, we assume that trans-
missions take advantage from beamforming techniques. In
particular, we assume the UABS is using a fixed Grid of
Beams, operating on a set of Nbeam = 9 resulting on the
ground as circular spots and arranged in a 3x3 grid. We
define Φ the solid angle deriving from the radiation pattern
and αbeam ≈ Φ/Nbeam as the solid angle of a beam.
Consequently, the maximum gain G can be expressed as [14]:

G =
41000

(αbeam
360
2π )2

(2)

For the sake of simplicity, we assume the radiation pattern is
ideal, with gain G inside the angle αbeam, and zero outside.
We also refer to ϕ as the 2D angle of the UABS’s vertical
plane, from which we infer the field of view of the UABS
projected on the ground.

III. MACHINE LEARNING MODEL

A. Reinforcement Learning Problem Definition

We assume time t is discretized into steps, of duration tmsg .
According to standard RL problems, an agent interacts with an
environment during an episode, lasting T steps. At each step,
starting from state st, belonging to the state space, S, the
agent chooses an action, at, from a set of possible actions,
A, according to its policy π. After selecting such action, the
agent moves to state st+1 ∈ S and receives a scalar reward
rt = r(st, at) based on a reward function r : S ×A → R.

To this end, we define:
• an agent as the UABS, u, whose target is to design the

trajectory which maximizes a reward function;
• a state in the state space that consists of the agent

location, the time instant and number of vehicles under
each beam. The agent position is expressed in (x, y)
coordinates at the relative time instant t. We assume that
the UABS is able to get information related to the number
of GUEs under its field of view, therefore we also define
a vector bt, in which each element bt,i is equal to the
number of GUEs under the i-th beam at time instant t.
Therefore, a state is defined as st = {xt, yt, t,bt};
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• an action of the agent as a movement on the map in one
of 8 possible directions or hovering. Therefore, the Action
Space is defined as A = {0,←, ↑,→, ↓,↖,↗,↘,↙},
where 0 represents the decision to stay still;

• the reward measures the benefit of selecting a specific
action a while being in a state s. Since the agent aims at
maximizing the number of served GUEs, it is computed
as the sum throughput of the vehicles seen by the UABS
at time instant t. Therefore, it is defined as

rt =
∑
g∈G

r
(g)
t :=

∑
g∈G

Bch log(1 + SNR(g)
t ), (3)

where r
(g)
t indicates the capacity of the g − th GUE at

time t for the UABS in state st and action at, and where
Bch is the channel bandwidth.

B. Q-Learning

Q-Learning is a model free RL algorithm which consists of
a agent interacting with an environment in order to learn and
optimize a behavior. In particular, it aims at iteratively im-
proving the state-action value function, or Q-function, which
represents an expectation of the discounted cumulative future
reward Rt from the current state st up to the last step T:

Qπ(s, a) = Eπ[Rt|st = s, at = a, π] (4)

where Eπ is the expected value under policy π and with Rt

given by:

Rt =
T∑
i=t

γi−tr(st, at) (5)

where γ ∈ [0, 1] represents the discount factor, which balances
the importance of the immediate and the future reward.

Given a transition < st, at, rt, st+1 >, Q(s,a) can be
expressed by the Bellman equation in terms of Q-value of
the next state st+1:

Q(st, at) = rt + γmax
a

Q(st+1, a) (6)

In other words, it is possible to express the Q-value as the
sum of the immediate reward and the discounted future reward
of the state that follows, without the need of calculating each
value as the sum of the expected cumulative reward.

In its simplest form, Q-Learning exploits the Q-Table, a
look up table in which the Q-value for each state-action pair
is stored and regularly updated. The agent chooses an action
based on an epsilon greedy policy [15], thus the chosen action
may be random with probability ϵ or it can be the action with
the highest Q-Value with probability 1-ϵ. Each time an action
is chosen, the updated Q-Value is computed as:

Qnew(st, at) = Q(st, at)+

+ α(rt + γmax
a

Q(s(t+1), a)−Q(st, at))
(7)

where α represents the learning rate, which determines how
new information overrides old information.

C. Deep Q-Learning

The main drawback of Q-Learning is that in case of high
dimensional state space, the Q-Table would require too much
time to be created, as well as too much space to be stored. For
these reasons, Deep Q-Learning (DQN) has been introduced in
order to represent the policy π or other learned functions as a
deep neural network which, taking the state as input, estimate
the Q-values for all the different actions an agent may take.

Q-values can be any real values, which makes the problem
a regression task, thus optimized with a function of the error
loss between the predicted and the true values, estimated
using Eq. 6. Both true and predicted target values are used
to calculate the loss and consequently to update the neural
network weights, leading to a huge correlation between target
values and network weights. To avoid convergence issues and
make the training more stable, two different networks are used:

• the action network, with parameters θ, represents the
predicted value and it is used to select the action the
agent takes and it is updated every n steps;

• the target network, with parameters θ−, is a clone of the
action network used only to compute the true value and
it is updated every m >> n steps by copying the action
network’s weights.

Therefore, the loss is computed as:

L = f(rt + γmax
a

Q(st+1, a, θ
−)−Q(st, at, θ)) (8)

As f , we chose the Huber Loss [16].

D. Double Deep Q-Learning

In [17], authors claims that the standard Q-Learning algo-
rithm is known to overestimate action values under certain
conditions. In order to prevent such overestimation, a Double
Deep Q-Learning (DDQN) algorithm is presented. The idea
behind this algorithm is to decouple the selection from the
evaluation, by exploiting the action network to select the
action, whereas the corresponding Q-Value is estimated using
the target network.

Therefore, the loss function changes as:

L =f(rt + γQ(st+1, argmax
a

Q(st+1, a, θ), θ
−)−

−Q(st, at, θ))
(9)

E. Dueling Deep Q-Learning

Given the policy π, it is possible to define the state-
value function V π

(s) = Ea∼π(s)[Q
π
(s,a)], which represents the

expected total reward following policy π starting from state s.
Consequently, it is possible to define the Advantage function

as
Aπ(s, a) = Qπ(s, a)− V π(s) (10)

which represents how advantageous would be an action with
respect to the others at the given state following policy π.

Dueling DQN [18] introduction is motivated by the fact
that it is unnecessary to know the outcome of each action at
each time step, so, exploiting two separate streams (which
are recombined in order to generate the Q-values) for the
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estimation of the State values and the Advantages, the dueling
architecture can learn separately which states are important
from which action is better to select. This also provides the
possibility to integrate it in the classical DQN schemes, whose
functioning remains the same, since no modification to inputs
and outputs are made.

IV. NUMERICAL RESULTS

Parameters set in simulations are reported in Table I. During
training, we set the Buffer Size N = 500000 and the Batch
Size K = 128.

TABLE I: Network and Channel Parameters

Parameter Notation Value
Number of GUEs Ng 15

Average GUE speed vg 10 m/s
GUE transmit power Ptx,g 20 dBm

GUE transmission gain Gtx,g 0 dB
UABS altitude hu 100 m

UABS transmit power Ptx,u 23 dBm
Carrier frequency fc 30 GHz

Channel bandwidth Bch 1.44 MHz
Effective noise power Pnoise -106.4 dBm

Episode Length T 380 s
Learning Rate α 0.001

Discount Factor γ 0.8
Buffer Size N 500k
Batch Size K 128

Action Network Update n 1
Target Network Update m 500

Results are presented in terms of total reward, which is the
sum of the reward obtained by the agent at each step, that is
R =

∑T
t=0 rt, where T is the length of one episode and rt

has been defined in Eq. (3).
Fig. 2 shows the total reward as a function of the number of

episodes for different algorithms presented in Section III, when
setting vu=20 m/s and ϕ = 140◦. Note that, by changing ϕ, the
antenna gain at the UABS will change according to Eq (2). It
can be clearly seen that the dueling DDQN architecture offers
more advantages, since the dueling DDQN and the dueling
DQN perform better with respect to the other architectures.
The reason behind this may be explained by the fact that the
dueling architecture is able to learn which states are important
regardless of the action to take, which, in our case, means
that the agent is able to detect which are the most important
locations (i.e., states) to reach first and then optimize how to
reach them. Surprisingly, the double architecture alone does
not provide good results, even worse than the standard DQN.
This may happen due to the fact that the Q-value, in the double
architecture, is estimated exploiting the target network, which
is updated slower w.r.t. the action network, as explained in
Section III-C. This penalizes the knowledge the agent may
have acquired and which is not used until the next target
network update. In addition, the figure shows how the intro-
duction of the beam information bt into the state definition

Fig. 2: Comparison between different algorithms for vu=20
m/s and ϕ = 140◦.

gives a huge boost in terms of training time, allowing the
algorithms to converge after 1000 episodes. On the other hand,
the removal of such information, which changes the state
definition to st = {xt, yt, t}, increases the time needed for
the algorithms to converge up to 10000 episodes, since the
agent has less data at its disposal. Finally, the horizontal line
shows the performance of a UABS taking decisions without
using any RL-based solution, but only selecting each action
by going towards the direction of the beam with the highest
number of vehicles inside at each time step. This allows us
to compare the RL architectures with a benchmark, where
the UABS is exploiting the information available but it is
not actually learning how to use it properly. As it can be
clearly seen, the benchmark performance is very poor w.r.t.
those achieved when RL is used.

On the overall, we consider the Dueling DDQN to be
the best solution, since it converges faster w.r.t. the standard
Dueling architecture. Therefore, next results will be presented
considering only such algorithm.

Fig. 3 shows the total reward as a function of the number of
episodes for different UABS speed, vu, having set ϕ = 140◦.
Results are comparable in terms of total reward obtained at
the end of the training, even though higher speeds offer faster
convergence mainly because the agent is able to explore the
entire map faster. In addition, it can be noticed that choosing
such speeds do not worsen the performance, even if they are
higher w.r.t. the average GUEs speed.

Finally, Fig. 4 depicts the total reward as a function of the
number of episodes for three different overall field of view
of the UABS, ϕ, when setting vu=20 m/s. As can be seen, a
larger field of view, and therefore a larger angle of aperture
per beam, provides better results mainly because more GUEs
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Fig. 3: Comparison between different UABS speeds with
Dueling DDQN for ϕ = 140◦.

Fig. 4: Comparison between different UABS aperture angles
with Dueling DDQN for vu=20 m/s.

are seen by the UABS. In addition, the beam angle of aperture
helps also in the detection of the GUE movement direction,
resulting in a faster learning.

V. CONCLUSION

In this paper we presented different RL architectures to
solve the trajectory design problem in UABS network pro-
viding services to vehicular applications. Such architectures
are based on a family of Q-Learning algorithm which are able
to generate a good trajectory by letting the agent explore the
environment, resulting in letting the UABS track the vehicles’
movement and follow them during their path. We proved
that the dueling architecture is particularly suitable for the
target tracking problem and that the inclusion of beamforming
information in the state definition can help solve such problem.
Finally, we conducted an analysis on different UABS related

parameters, showing that there exists an optimal configuration
which leads to better results in terms of network throughput.
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