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Abstract—The precision of indoor localization, especially
height estimation, is critical to unmanned aerial vehicle (UAV)
navigation to avoid crashes because indoor environments are
narrow and complex. The lack of satellite-based navigation
signals makes this task very challenging. Moreover, objects in
indoor environments could be randomly shaped and in motion,
making map-based navigation unreliable. There exist solutions
utilizing advanced sensor arrays such as laser scanners or
multiple cameras, but the UAVs’ weight load and computational
resources are limited. In this paper, we propose a filtering-based
method that allows for estimation of the height of the UAV by
stand-alone range finders. Model-detecting particle filters are
used to detect changes in objects while estimating the height of
the UAV simultaneously. Multiple filters are utilized to speed up
the computation. Numerical experiments show that the proposed
method is more accurate than other methods.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) have recently gained
increasing popularity in public and civil applications, including
search and rescue missions [1], package delivery [2], preci-
sion agriculture [3], and topographic mapping [4]. With the
wide range of applications of UAVs, accurate localization is
becoming a critical requirement for navigation and collision
avoidance. This requirement is relatively easy to meet in
outdoor environments, where the Global Navigation Satellite
Systems (GNSS) signals are accessible to the UAVs. However,
in indoor environments, those signals are not available. Thus,
indoor UAVs rely on measurements obtained by onboard
sensors, such as cameras or laser scanners, which are heavy
and need a lot of computational resources. Furthermore, the
presence of irregular obstacles makes indoor UAV localization
even more challenging.

Due to the existence of obstacles above and below UAVs in
indoor environments, altitude estimation is critical for reliable
UAV operation in indoor settings [5]. There have been various
methods proposed in the literature to solve this problem. In
[6], a sensor fusion algorithm is proposed to estimate the UAV
altitude by combining the measurements from an ultrasonic
proximity finder and an atmospheric pressure sensor with a
weighting function after filtering the measurements. Kalman
filters (KFs) and extended Kalman filters (EKFs) are also
popular for data fusion based on multiple sensors. In [7], KF
is chosen to fuse the signals from sonar and an accelerometer.
The method in [8] estimates the UAV’s 3D state by collecting
data from a variety of sensors and fusing the measurements

with an EKF. Besides traditional sensors, computer vision can
be used to estimate the UAV altitude with a single onboard
camera and machine learning approach [7], or two cameras
that build stereoscopic system [9]. In another work [10], the
altitude is estimated with only two IR sensors by employing
multiple model adaptive estimation (MMAE), which gives the
average of a bank of KFs. However, the shape of the obstacles
is not taken into consideration in that solution.

In this paper, we propose a novel approach based on
Bayesian filtering for indoor UAV altitude estimation. This
method utilizes particle filtering with Bayesian model averag-
ing to detect the shape-changing of the obstacles on the ceiling
and/or the floor. At the same time, multiple filters are used to
estimate the height in parallel, which reduce the dimension of
the state space and the computational cost.

The paper is organized as follows. In Section II, we provide
the mathematical formulation of the problem. Section III
presents the details of the proposed methods. The results of
numerical experiments are given in Section IV. And we draw
the conclusion in Section V.

II. MATHEMATICAL PROBLEM FORMULATION

In this work, the UAV is operated in an indoor environment
shown in Fig. 1, where the ceiling and the floor are both flat
and level. There are unknown obstacles on the ceiling and/or
the floor, which can be of any shape. The UAV has two IR
sensors onboard: one pointing straight to the ceiling and the
other one pointing straight to the floor. We assume that the
two sensors are at the same level, hence there is no vertical
distance between the two sensors.

Our goal is to estimate the altitude of the UAV by obtaining
only the two measurements from the IR sensors. The problem
is challenging because of the noise that the sensors can bring,
as well as the lack of knowledge in the unpredictable height
of the obstacles. We formulate the problem as a state-space
model (SSM), where the dynamics of the UAV and the vertical
dimension of obstacles can be considered as latent states,
and the measurements from the two sensors are observations,
which are shown in Fig. 1.

The transition model can be built as the state vector xt.
We define x1,t, x2,t, and x3,t as the height, vertical speed
and vertical acceleration of the UAV at time t respectively.
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Fig. 1: State and measurement definition

According to the kinematics of UAV, their transition model
can be given by:

x1,t = x1,t−1 + Tsx2,t−1 + 0.5T 2
s x3,t−1, (1a)

x2,t = x2,t−1 + Tsx3,t−1, (1b)

x3,t = at, at ∼ N (0, σ2
a), (1c)

where Ts is the sampling period. Because the transition model
of acceleration x3,t depends on many unknown factors, we
simplify the model as a Gaussian distribution with variance
σ2
a.
The states x4,t and x5,t are defined as the height of the

obstacles on the ceiling and the floor, respectively. They are
unknown and not easily represented by a fixed model, and we
will address this issue in Section III.

The observation model is given by the following equations:

y1,t = R− x4,t − x1,t + v1,t, v1,t ∼ N (0, σ2
o), (2a)

y2,t = x1,t − x5,t + v2,t, v2,t ∼ N (0, σ2
o), (2b)

where the height of the ceiling R is known.

III. PROPOSED METHOD

A. Proposed transition models for the objects

The transition model of the obstacle height states x4,t and
x5,t depends on their shapes. In most cases, the obstacles
have positive heights. However, in [10], Gaussian distributions,
which have half of their support in the negative domain,
are used to model the obstacle heights. In this paper, we
propose some transition models that represent the states more
appropriately:

x4,t = 0, (3)
x4,t ∼ U(a, b), (4)
x4,t ∼ Exp(µe), (5)

x4,t ∼
1

M

M∑
m=1

N (x4,t|hm, b2), (6)

where (3) represents no obstacles; (4) represents objects of
uniformly distributed heights; (5) represents exponentially
distributed heights which implies most of the objects are low

in height; and (6) is the kernel density estimated distribution
given recorded obstacle heights h1:M and the bandwidth of
the smoothing kernel b. The transition of state x5,t can also
be modeled in the same way.

B. Model-detecting particle filter (MDPF)

We propose a model-detecting particle filtering method that
estimates the model belief along with the states.

Suppose that there are N SSM models for a time sequence.
Each model can be expressed as follows:

xt ∼ fn(xt|xt−1),

yt ∼ gn(yt|xt), (7)

where n ∈ 1 : N is the index of the nth model.
At time step t, we assume equally weighted samples x̃(1:Mn)

n,t

are given, where n is the model index, and Mn is the number
of samples dedicated to the nth model.

The samples are proposed by each model n individually,
i.e.,

x(m)
n,t ∼ fn(xn,t|x̃(m)

n,t−1), m = 1 : Mn. (8)

The non-normalized weights of the samples can be calculated
by the observation distribution gn(·), i.e.,

w̃
(m)
n,t = gn(yt|x

(m)
n,t ). (9)

The proposing and weighting steps are intrinsically parallel
and can take advantage of modern computational devices such
as multi-thread CPU or GPU. The weights are normalized
within each model, i.e.,

w
(m)
n,t =

w̃
(m)
n,t∑Mn

i=1 w̃
(i)
n,t

. (10)

The nth model’s likelihood Ln,t can be obtained by the mean
of the non-normalized weights

Ln,t =
1

Mn

Mn∑
m=1

w̃
(m)
n,t , (11)

and the belief of the nth model, Pn,t, is updated in a Bayesian
way, that is,

P̃n,t = Ln,tP
ρ
n,t−1, (12a)

Pn,t =
P̃n,t∑N
n=1 P̃n,t

, (12b)

where ρ is the forgetting parameter. The value of ρ depends
on the setting of the problem. If the model is known and fixed
through time, we set ρ = 1 which means no forgetting is
done. If the models are alternating and we want to detect
the switching of models, we need to set 0 ≤ ρ < 1.
A smaller ρ value represents sharper transition between the
models. In the extreme case that ρ = 0, no model beliefs
are remembered and the models are assumed to be changing
suddenly without transition. In the experiments described in
Section IV, we found that the forgetting parameter ρ will affect
the smoothness of the belief curve: the curve will not be as
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smooth when ρ is close to 0, and will have a large latency
when ρ is close to 1.

When estimating states, we first do the local estimation in
each model n,

x̂n,t =
Mn∑
m=1

w
(m)
n,t x(m)

n,t , (13)

and then, the combined estimation can be acquired by
Bayesian model averaging

x̂t =
N∑

n=1

Pn,tx̂n,t. (14)

The samples from all models are aggregated by(
x(1:M

∗)
t , w

(1:M∗)
t

)
=

N⋃
n=1

(
x(1:Mn)
n,t , Pn,tw

(1:Mn)
n,t

)
, (15)

where M∗ =
∑N

n=1 Mn. Theoretically, these samples can be
directly used by all models in the next iteration. However, that
will cause the number of samples to grow exponentially. In-
stead, we perform downsampling to keep a stationary number
of samples, i.e.,

x̃(1:Mn)
n,t

iid∼ C
(

x(1:M
∗)

t , w
(1:M∗)
t

)
, n = 1 : N, (16)

where C(items,weights) denotes a categorical distribution.
The sample size of each model can be constant and is the

same for all the models, i.e.,

Mn = M, n = 1 : N. (17)

However, because some models may not represent the obser-
vations well, assigning a large number of samples to these
models is a waste of computational resources. As the model
beliefs represent the reliability of the models, we can assign
different numbers of samples to different models accordingly.

The first strategy is that the number of samples is propor-
tional to the model belief

Mn,t = ⌈M∗Pn,t−1⌉,

M∗
t =

N∑
n=1

Mn,t, (18)

where ⌈·⌉ denotes the ceiling operation; because of this
operation, the total number of samples M∗

t is not a constant
number but a changing integer around a fixed value M∗.
The problem of this strategy is that the number of samples
dedicated to some models will decrease to 0, and therefore
will not be able to recover [11]. This phenomenon is called
“degeneracy”. Therefore, we adjust the previous strategy to
keep a minimum number of samples M ′ for each model,

Mn,t = M ′ + ⌈(M∗ −NM ′)Pn,t−1⌉,

M∗
t =

N∑
n=1

Mn,t. (19)

The complete algorithm is summarized in Algorithm 1, and
its block diagram is shown in Fig. 2.

Algorithm 1: One iteration of MDPF in time t

Given:

x̃(1:Mn)
n,t , n = 1 : N

Prediction phase:
For n = 1 : N

Propose the samples by (8).
end For

Update phase:
For n = 1 : N

Weight the samples of filter n by (9), (10).
Calculate model likelihood by (11).

end For
Update the model probabilities by (12).
Resample by (16).

Result:
Combined estimation (14)

Fig. 2: Block diagram of the proposed MDPF algorithm.

C. Multiple filters implementation for UAV height estimation

In the UAV transition models, the states can be divided into
three independent groups: drone states, floor obstacle height,
and ceiling obstacle height. The transition of the states in
each group does not depend on states from other groups.
This allows us to divide the state space into smaller state
groups and use multiple cooperative particle filters of smaller
dimensions to do the estimation. Because particle filtering is
a Monte Carlo based method, reducing the dimension of state
space will help increase the accuracy with less samples, and
thus reduce the computational cost. In this paper, we propose
to use the concept of multiple particle filter (MPF) based on
[12]. We add one step that shares the estimation results across
filters and then re-estimates. This iterative implementation of
MPF can improve the estimation accuracy. The algorithm is
summarized in Algorithm 2, and the block diagram of the
algorithm is shown in Fig. 3.
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Algorithm 2: One iteration of MPF in time t

Given:

x̃(1:M
∗
t−1)

[k],t , k = 1 : K (20)

Prediction phase:
For k = 1 : K

Run prediction phase of state group k’s filter.
Calculate the public state x̌[k],t by

x̌[k],t = x̂[k],t|t−1 =
1

M

M∑
m=1

x
(m)
[k],t. (21)

end For
Update phase:

For i = 1 : I
For k = 1 : K

Run update phase of state group k’s filter using
observation model

q(yt|x[k],t, x̌[−k],t). (22)

Update the public states by

x̌t ← x̂t = ∪Kk=1x̂[k],t. (23)

end For
end For

Result:
Combined estimation x̂t

Fig. 3: Block diagram of the proposed MDPF algorithm.

In (20), K is the total number of groups. Subscript [k]
denotes the states in the kth group. Similarly, subscript [−k]
in (22) denotes all states that are not in the kth group. I is the
number of iterations for using the estimated result as public
states. In practice, a very small number of I , such as I = 2,
will give a good result.

IV. NUMERICAL EXPERIMENTS

In our simulation, we flew the drone in an indoor envi-
ronment with constant horizontal speed. The vertical move-
ment followed the transition model (1) with parameter σ2

a =

0.001(m2/s)
2. The ceiling height was R = 3 meters. Obsta-

cles of different shapes were located on the ceiling and the
floor. All the obstacles were of positive heights. Observations
were acquired according to (2) with sensor variance parameter
σ2
o = 0.001m2. The numerical experiment duration was

T = 40 seconds and the sampling period was Ts = 0.02
seconds. One realization of the simulation is shown in Fig. 4.

0 5 10 15 20 25 30 35 40
0.0

0.5

1.0

1.5

2.0

2.5

3.0

UAV trajectory
Ceiling
Floor

Fig. 4: Data of one simulation realization, where UAV trajec-
tory is x1, ceiling is R− x4 and Floor is x5

We used the proposed MPFs to estimate the states of
the UAV system. The states were divided into three groups:
x[1],t

∆
= x1:3,t, x[2],t

∆
= x4,t, and x[3],t

∆
= x5,t. The first

group of states was estimated by a PF that used the UAV
transition model (1). For the second and third groups, we
used the proposed MDPF with Mn = 1000 samples for each
model and forgetting parameter ρ = 0.6. Here, the value
of ρ is hand selected. To test the performance of different
transition models, we did the experiment with three specific
filter implementations, which are called F2∼4, with different
model combinations. Each filter implementation used two
proposed obstacle transition models, and the transition models
for x[2] and x[3] were the same. Please see Table I for detailed
model assignments and model parameters.

We tested the proposed methods by numerical experiments,
and compared the results with the MMAE method proposed
in [10], which is called F1 in the presented simulation results.
The performance was measured by root mean square error
(RMSE) of the UAV’s height estimation defined as:

1

S

S∑
s=1

1

T

T∑
t=0

(x1,t − x̂1,t|t)
2, (24)

where S is the number of simulations. We also recorded the
RMSE of the obstacles’ height estimate for reference:

1

S

S∑
s=1

1

T

T∑
t=0

1

2

(
(x4,t − x̂4,t|t)

2 + (x5,t − x̂5,t|t)
2
)
. (25)
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Filter
name

State
group

x[1],t
∆
= x1:3,t x[2],t

∆
= x4,t x[3],t

∆
= x5,t

F2 Drone transition (1)
σ2
a = 0.001

No obstacles (3) &
Uniform (4) with
a = 0, b = R

F3
No obstacles (3) &
Exponential (5) with
µe = 0.5

F4
No obstacles (3) &
KDE (6) with
b = 0.001

TABLE I: State groups of MPFs and transition model(s) for
each PF and MDPF in numerical experiments.

Filter
type Filter

RMSE Drone
Height
RMSE

Obstacle
height
RMSE

Over all
RMSE

MMAE F1: Kalman 0.0132 0.0231 0.0206

Proposed
F2: No \Uniform 0.0068 0.0200 0.0168
F3: No \Exponential 0.0061 0.0197 0.0165
F4: No \KDE 0.0055 0.0185 0.0154

TABLE II: RMSE of estimations by different methods av-
eraged over 100 simulations (No is the abbreviation of no
obstacles).

The Experiment results are shown in Table II.
In the results, we see that the proposed method with any

model was superior to MMAE. We also see that the perfor-
mance from F4 was better than F3, and F3 was better than F2.
That was because the uniform transition model (4) we used in
F2 was less descriptive than the exponential transition model
(5) we used in F3. The later assumes that most of the obstacle
heights were not very large. The KDE transition model (6)
had the full knowledge of the distribution of obstacle heights,
and thus had the best performance. From this comparison, we
confirmed that the estimation result can be improved if more
information is given.

We can also infer the existence of obstacles by the model
beliefs. For example, in group x[3],t of F2, the two transition
models were (3) and (4), which represented “obstacle” and
“bare floor” respectively. If (4) had dominating model belief,
we can infer that an obstacle existed at that time instant. The
model beliefs of F2 are shown in Fig. 5, which suggests that
the proposed methods can infer the existence of obstacles well.

V. CONCLUSION

In this paper, we propose a sequential estimation method
for indoor UAV height estimation. Multiple models are used in
particle filters to detect different situations of indoor obstacles
on the floor and ceiling. The implementation of multiple par-
ticle filters reduces the dimension of Monte Carlo estimation
and thus saves computation resources and improves perfor-
mance. Simulation results show that the proposed methods can
estimate the UAV height with higher precision than previous
methods.
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Fig. 5: Beliefs of obstacles’ existence in one simulation of
F2, where the first row is the belief that obstacles exist on the
ceiling and the last row is the belief that obstacles exist on
the floor. The second and the third rows are R − x4 and x5

respectively.
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