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Abstract—Double JPEG compression detection has become
a core issue in image forensics, as it provides information
about the processing history of the image and its authenticity.
Several recent works address this problem by exploiting the
potential of CNNs to achieve state-of-the-art performance on
test datasets. Unfortunately, those schemes are typically tailored
to their specific training conditions and suffer a significant
drop of performance in real-life scenarios. This paper aims
at assessing the influence of quantization table mismatch (with
regards to those seen in training) in the detection of double JPEG
compression. Experimental results show inconsistency between
different sets of quantization tables, with trained models yielding
significantly worse results on unknown sets. This effect is also
evident in a more realistic setting, where it appears to be more
noticeable for sources falling in operating regions with greater
inconsistency.

Index Terms—Image forensics, Double JPEG compression,
Convolutional Neural Networks, Source heterogeneity

I. INTRODUCTION

With the current availability of digital cameras and social
networking sites in which images can be widely spread, an
interest in detecting image manipulations has been rapidly
growing. Moreover, with the evergrowing list of camera
models and processing operations (such as images being
uploaded to a cloud storage service like Google Photos), this
greater accessibility also results in a wider variety of sources
generating digital images. Many solutions to the manipulation
detection problem have been proposed that focus on the
detection of double JPEG-compressed patches. Early works
were built upon hand-crafted features extracted from JPEG
images, including features derived from the pixels and DCT
coefficients histograms [1], but these methods were often less
effective, for instance, when the second JPEG compression had
a lower Quality Factor (QF) than the first. Since then, the focus
has shifted towards CNN-based architectures, such as [2]–[4],
with promising results. However, as these new classification
features are learned directly from the training data, this
approach is more susceptible to overfitting to the dataset
characteristics, resulting in poor generalization capabilities to
unknown sources. In the field of steganalysis this problem is
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known as the Cover-Source Mismatch (CSM), and has been
receiving increasing attention as of late with the ALASKA
contest [5]. The two main strategies to deal with CSM in
steganalysis are the atomistic approach (reducing its effect by
using similar sources with comparable characteristics) and the
holistic approach (using a diverse enough dataset so that the
solution will be less dependant on the source) [6]. The latter
more closely resembles the strategy used by some forensic
detectors such as [4], as it requires no prior knowledge of the
image source.

The overall goal of this paper is to provide a deeper
look into the generalization capabilities of such CNN-based
double JPEG compression detectors, particularly [4] due
to its similarity to the holistic approach. Generalization
w.r.t. quantization tables is an imperative need in these
detectors, as some sources use image-adaptive quantization
tables optimized for the image content [7], making it extremely
likely to encounter unknown tables in a practical setting.
Experimental results that highlight the relevance of this
quantization table mismatch are reported, and its impact is also
evaluated in a realistic scenario using actual image-adaptive
quantization tables.

The rest of the paper is organized as follows: Section
II introduces prior concepts that this work relies upon, and
describes the main contributions of [4]. Section III includes
the description of the experimental methodology, defining
the quantization table subsets considered, explaining the
generation of the different image datasets and training of
the models, and presenting the experimental results. Finally,
Section IV concludes this paper.

II. PROBLEM STATEMENT

A. Source mismatch

Assessing the impact of encountering unknown sources, as
pointed out in [6], presents the challenge of discerning the
effects of two different factors: the inconsistency w.r.t. the
known source, and the unknown source’s intrinsic difficulty. In
other words, the unknown source might be intrinsically harder
or easier to classify, which might overshadow the effect of the
inconsistency itself. To address this, the authors in [6] define
the source intrinsic dificulty as the score obtained when the
detector has been trained only on that given source, and the
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inconsistency as the score difference compared to evaluating
that same source on a detector trained on a different one.
Although these definitions are useful in steganalysis, forensic
classifiers such as double JPEG compression detectors are
typically trained by using images coming from several sources,
potentially using different quantization tables, which makes
such definitions less practical.

Taking this into account, an attempt is still made in this
paper to estimate the intrinsic difficulty of a set of sources
by training models on them that can be used as a reasonable
baseline in the comparison. For the sake of simplicity, even
though this does not strictly fit the original definitions in [6],
the score of a known set of sources (namely, the set used in
training) over a model will be referred to as intrinsic difficulty
and the difference to the score over a similar model that was
not trained on that set will be referred to as inconsistency.

B. Park et al.’s ConvNet

The authors in [4] propose a CNN-based double JPEG
compression block detector, taking histogram features and
quantization tables from the last JPEG compression as inputs.
The histogram features are first extracted from the Y channel
of the decompressed image, followed by a deep convolutional
neural network consisting of four convolutional layers, three
max pooling layers, and lastly, three fully connected layers in
which the quantization table information is appended to each
of their input feature vectors. The PyTorch implementation of
this solution is available in a public repository1 by the original
authors, and it was used throughout this paper. This detector
will be referred to as Park ConvNet for the sake of brevity.

Another contribution of [4] was to create a dataset of
single and double JPEG-compressed blocks, with quantization
tables randomly chosen from a set of 1120. These were
gathered in the span of two years while operating a public
forensic website, and include the standard quantization tables
(i.e., scaled versions of the quantization tables in Annex
K.1 of the JPEG standard [8], corresponding to QF1,QF2 ∈
{50, . . . , 100} according to the Independent JPEG Group, as
defined in [9]). This diverse image dataset was used to train
the original model.

Although the authors report an overall accuracy of 93.28%
for the trained Park ConvNet on the validation blocks
(unfortunately, there are no images left for testing on the
dataset), a general metric is not sufficient on its own to
accurately describe the performance of the detector. The
difficulty of double JPEG compression detection depends
on several parameters, such as the QF of the last JPEG
compression or the relationship between the first (QF1) and
second (QF2) JPEG quality factors, and a model may perform
differently depending on the situation. To exemplify this, one
can see in Table I the difference in True Positive Rate (TPR)
and True Negative Rate (TNR) for the trained Park ConvNet
on the validation blocks, where the Positive class corresponds
to the double JPEG-compressed case. Both the TPR and

1https://github.com/plok5308/DJPEG-torch

TABLE I: Original Park ConvNet’s Performance in Different
Operating Regions

Double Compression Detection
Overall TPR(%) TPR(%)| QF1<QF2 TPR(%)| QF1>QF2

90.59 90 (49/54) 68 (30/44)
Single Compression Detection

Overall TNR(%) TNR(%)| QF>75 TNR(%)| QF<75
95.97 97.6 (1289/1321) 91.3 (1114/1220)

TNR were calculated using only those blocks compressed
with standard quantization tables. This restriction resulted in
very few examples, specially for the double JPEG-compressed
blocks, which complicates the accurate estimation of the
model’s performance; however, the differences in TPR, when
QF1 < QF2 and QF1 > QF2, and TNR, when QF > 75 and
QF < 75, are still significant.

As discussed in Sec. II-A, properly characterizing the
performance of a model on a set of sources will be crucial for
assessing the generalization capabilities of the detector. Given
that a set can potentially present very different scores over
blocks that meet specific conditions, it is essential that these
operating points are taken into account, and they will have
to be defined in a way that is applicable to the non-standard
quantization tables considered.

C. Comparing quantization tables

The following semi-metric was first introduced in [10] and
measures the ‘dissimilarity’ between two quantization tables
p, q:

d2(p,q) =
∑

k,l∈{1,...,8}

1

(k + l)2

(
qkl − pkl
qkl + pkl

)2

, (1)

where pkl and qkl represent the (k, l)-th element of the
quantization matrices p and q, respectively. This semi-metric
can be used to determine the closest standard quantization
table to a given non-standard one, which can be taken as an
estimate of its QF, as was done in [10]:

Q̂F(q) = argmin
QF∈{1,...,100}

(d(q,qst(QF))), (2)

where qst(QF) represents the standard quantization table
corresponding to a given QF. Furthermore, the dissimilarity
itself serves as a measure of the relationship between any
two quantization tables used for the double JPEG blocks. For
clarity in the representation of the results, the dissimilarity
will be considered negative when the Q̂F of the first JPEG
compression is strictly lower than that of the second JPEG
compression.

III. EXPERIMENTAL METHODOLOGY AND RESULTS

This section presents the description of the quantization
table subsets considered and the generated image datasets, as
well as the experimental results evidencing the impact of the
source mismatch.
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A. Quantization tables subsets

Beyond the 1120 quantization tables available in [4], another
set consisting of 1317 tables is considered, some of which are
image-adaptive tables. These were collected from Photoshop,
the HDR dataset [11], the Desden Image Database [12] and
personal images. The following summarizes the quantization
table subsets that will be referenced later on:

• Subset P: Consisting of the 1120 tables from the original
work in [4].

• Subset A: Consisting of the additional 1317 tables (P ∩
A = ∅).

• Subset P∪A: Consisting of the total 2437 tables (P∪A).
• Subset G: Consisting of a random subset of 10 tables out

of 334 from Google Photos in A (G ⊂ A).
• Subset L: Consisting of a random subset of 10 tables out

of 50 from the LG Nexus 5 camera in A (L ⊂ A).
• Subset S: Consisting of a random subset of 10 tables out

of 40 from the Samsung Galaxy Note 8 (SM-N950U)
camera in A (S ⊂ A).

• Subset K: Consisting of a random subset of 10 tables out
of 51 from Kodak Easyshare M1063 in A (K ⊂ A)

• Subset P ′∪L∪G: Consisting of a random subset of 1100
tables from P , and all tables from L and G.

• Subset P ′∪S∪G: Consisting of a random subset of 1100
tables from P , and all tables from S and G.

• Subset P ′∪K∪G: Consisting of a random subset of 1100
tables from P , and all tables from K and G.

Note that for subsets P ′ ∪ X ∪ G, where X ∈ {L,S,K},
the change w.r.t. P is <2% (so as to restrict the impact on the
overall cost function during training), the size of the subsets
is the same as P , and all standard quantization tables were
included in the subset of 1100 tables from P .

As was done in [4], all quantization tables across all subsets
quantize the luminance channel only, using an 8×8 matrix of
ones for the quantization of the chrominance.

B. Image datasets generation

A number of random image datasets were constructed in
order to train the models, emulating the original generation
method in [4], but using in our case the RAISE8K dataset
[13], as the original dataset from [4] did not inlude the
uncompressed version of the blocks. Additionally, three other
datasets were also constructed following different pipelines
that are more common in practice. The datasets were generated
as follows:

1) Random datasets: Firstly, 521,728 blocks of size
256×256 were randomly cropped from the RAW images
in RAISE8K. Each block was then compressed with a
randomly chosen quantization table from the subset, resulting
in the single JPEG-compressed blocks, and finally was
further compressed with another quantization table, selected at
random again, for the double JPEG-compressed blocks. From
the total of 1,043,456 blocks, 733,680 were used for training,
48,912 for validation, and 260,864 for testing (similar ratios
were used in [10], providing a high number of test images to

better characterize the performance of the detector). Blocks
belonging to the same RAW image were always included in
the same category across all datasets. Random datasets were
created for the P , A, P ∪ A and P ′ ∪ X ∪ G subsets that
were described previously and, for notational simplicity, will
be named after them. Additionally, another dataset was needed
for the P ∪ A subset with double the blocks, as will be seen
in Sec. III-C, that will be referred to as (P ∪ A)

⋆.
2) Pipeline datasets: In order to evaluate the impact of the

quantization table inconsistency in a more realistic setting,
three pipeline datasets (that will be referred to as L → G,
S → G and K → G) were generated using quantization tables
that were originally image-adaptive (i.e., from subsets L,
S, and K) and Google Photos (i.e., from subset G), which
also employs image-adaptive tables, emulating the scenario in
which users upload their single JPEG-compressed images to
the cloud. Using only the RAW images for the test blocks
in the random datasets, 16,304 blocks of size 256×256
were randomly cropped and compressed with a randomly
chosen quantization table from the given adaptive camera
dataset, resulting in single JPEG-compressed blocks, and
further compressed with a quantization table randomly chosen
from G to create the double JPEG-compressed blocks.

C. Experimental results

As presented in Sec. II, training a single Park ConvNet
would not be enough to assess the impact of encountering
unknown sources, as some baseline for the intrinsic difficulty
of such sources is needed. Because of this, a different Park
ConvNet was trained for each of the generated random image
datasets (P , A, P ∪ A, (P ∪ A)

⋆, P ′ ∪ X ∪ G), and for the
sake of clarity, each will be named according to the dataset
it was trained on. The different models were trained using
the original configuration of the code in the public repository,
with a batch size of 32 for 10 epochs, after which the weights
yielding the highest overall accuracy in the validation dataset
were saved.

1) Inconsistency analysis: Taking subsets P and A, the aim
of this analysis is to assess whether the inconsistency they
would present w.r.t. each other is significant in a Park ConvNet
model. In order to more accurately represent the detector’s
response to a given dataset, the dissimilarity semi-metric and
the estimated QFs of the quantization tables are used to define
the following operating regions:

• In double JPEG block detection: 60 uniform bins are
considered from d(q1,q2) = −1.5 to d(q1,q2) =
1.5, with q1, q2, the quantization tables used in the
first and second JPEG compressions. In more general
terms, three intervals can be defined as d(q1,q2) <
−δ, d(q1,q2) ∈ [−δ, δ], d(q1,q2) > δ (and have
been shaded in Figs. 1(a)-(b) and 2(a)-(b) in green, red
and yellow, respectively). As double JPEG compression
detection tends to be more challenging when q1 and q2

are very similar, δ can be visually determined according
to the score drop around d(q1,q2) ∼ 0, and throughout
this paper it was taken as δ = 0.15.
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(a) Park ConvNet P: TPR
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(b) Park ConvNet P ∪A: TPR
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(c) Park ConvNet P: TNR

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(d) Park ConvNet P ∪A: TNR

Fig. 1: Experimental TPR and TNR for Park ConvNet P and
P ∪ A, evaluated on test datasets P and A

• In single JPEG block detection: 14 non-uniform bins are
used, according to edges Q̂F(q) = {0, 35, 50, 60, 70,
75, 80, 82.5, 85, 87.5, 90, 92.5, 95, 97.5, 100}, with
q being the quantization table used in the single JPEG
compression.

For each of the operating regions of the detector, either the
TPR or TNR was calculated according to the test blocks that
fit the criteria.

One of the challenges of this comparison was the contrasting
strategies the different Park ConvNets were learning depending
on the training dataset, which made their performance
fundamentally different across the operating regions. Since
the model learns by optimizing its weights according to a
cost function over a given dataset, there might be different
local minima that yield similar overall results, which only
stresses the importance of considering the different operating
conditions while evaluating the performance of a detector.
In order to preserve the original Park ConvNet nothing was
changed in the training of the models, and they were free
to converge to whatever strategy resulted. This can be seen
for instance when comparing Figs. 1(c) and 2(c), where very
different TNRs can be observed across the Q̂F while the
overall accuracy of those models on the test datasets was
very close: 90.14% (Park ConvNet P tested on dataset P)
and 90.03% (Park ConvNet A tested on dataset A). Because
of the potential different strategies that can be learned, only
models with similar scores across the operating regions on the
known datasets where compared to estimate the inconsistency.

Figure 1 shows the performance of Park ConvNets P and
P ∪A, which converged to models with similar performance,
sacrificing the detection of single JPEG blocks with a stronger
compression (Q̂F < 50) in favour of the double JPEG blocks
where the second compression is significantly stronger than
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(a) Park ConvNet A: TPR
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(b) Park ConvNet (P ∪A)⋆: TPR
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(c) Park ConvNet A: TNR
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(d) Park ConvNet (P ∪A)⋆: TNR

Fig. 2: Experimental TPR and TNR for Park ConvNet A and
(P ∪ A)

⋆, evaluated on test datasets P and A

the first (d(q1,q2) > 1). Taking Park ConvNet P ∪ A as
a reference of how dataset A could potentially be detected
(an insight of its intrinsic difficulty on this strategy), it is
clear that there exists inconsistency between the two sets,
specially in Fig. 1(c) w.r.t. Fig. 1(d), in the drop of single
JPEG detection for 35 < Q̂F < 85 on dataset A. The TPR,
however, increases for d(q1,q2) ≫ 0, most likely as a result
of the decreased TNR for single JPEG blocks with stronger
compressions. The overall accuracy of dataset A falls from
88.54% (Park ConvNet P ∪A) to 82.91% (Park ConvNet P).

Given that the diversity of dataset P ∪ A is higher,
training on the same number of images slightly hinders the
performance of Park ConvNet P∪A, achieving a lower overall
accuracy on dataset P (88.92%) compared to Park ConvNet P
(90.14%). This effect can also be observed in Figs. 1(a), 1(b)
in d(q1,q2) ∈ [−δ, δ]. Because of this, and although the exact
impact of the diversity is not clear, Park ConvNet (P ∪ A)

⋆

is then trained on double the data.
Coincidentally, Park ConvNet (P ∪ A)

⋆ converged to a
model whose performance resembles that of Park ConvNet
A, as can be seen in Fig. 2. This solution seems to prioritize
the single JPEG detection, even when the last compression
is strong, over double JPEG detection when d(q1,q2) > 1.
As was done before, Park ConvNet (P ∪ A)

⋆ could be now
taken as a reference for the intrinsic difficulty of P in this
strategy. The inconsistency between the set of sources is
again noticeable, specially in Figs. 2(c)-(d) in the drop of
TNR on P for Q̂F < 90, but also the drop of TPR for
d(q1,q2) ∈ [−δ, δ] in Figs. 2(a)-(b). On the other hand, as in
the previous comparison, the TPR increases for d(q1,q2) > 1
on P , again most likely as a result of the TNR drop. In this
case, the overall accuracy on dataset P falls from 91.11%
(Park ConvNet (P ∪ A)

⋆) to 85.52% (Park ConvNet A).
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TABLE II: Impact over the Pipeline Datasets

Overall Accuracy(%) on Pipeline Datasets
Park ConvNet P ′ ∪ X ∪ G Park ConvNet P

L → G (X = L) 93.56 91.16
S → G (X = S) 93.24 90.82
K → G (X = K) 87.79 76.51

Unlike before, the overall accuracy on the known dataset
(now A) is similar for both models, with 90.67% (Park
ConvNet (P ∪ A)

⋆) and 90.03% (Park ConvNet A), which
highlights the importance of training over a large amount of
data when taking a holistic approach.

Considering both comparisons, there seems to be a tendency
for generalization to be less of a challenge in easier
operating regions, such as d(q1,q2) < −δ for double JPEG
compression, and Q̂F > 90 for the single JPEG-compressed
case. On the contrary, single JPEG compressions where Q̂F <
80 seem to be the most affected, followed by the gap around
d(q1,q2) ∈ [−δ, δ] in the second strategy, as seen in Fig. 2.

2) Impact over a realistic pipeline: The presence of
inconsistency is evident when training models in significantly
different subsets of quantization tables, but its impact was
also assessed for a more realistic scenario where the unknown
quantization tables belong only to a specific test pipeline. For
this purpose, Park ConvNets P ′ ∪ X ∪ G were trained on
datasets very similar to P so that the overall cost function
during training was not affected drastically by the new tables,
as was explained in Sec. III-A.

Each pipeline dataset (L → G, S → G, K → G) was
evaluated on its corresponding Park ConvNet P ′ ∪ X ∪ G as
a baseline for its intrinsic difficulty, and also Park ConvNet
P , to estimate the impact of the inconsistency. These results
can be seen in Table II. On the one hand, datasets L → G and
S → G present a slight drop of performance of around 2.4%
when evaluated in Park ConvNet P , but it is still significant
when taking into account the small percentage that these tables
account for in P ′∪X ∪G. On the other hand, K → G suffers a
greater accuracy fall of 11.28%. It is worth noting that both L
and S correspond to smartphone cameras whose quantization
table Q̂Fs fall in the range of 82 to 85, whereas K belongs to a
compact camera included in the Dresden Image Database [12],
with a wider range of Q̂Fs, some of which are as low as 57.
Considering Fig. 1(c), where generalization seems to be more
challenging for lower Q̂Fs, subset K would understandably be
more affected by the inconsistency.

IV. CONCLUSION

Current CNN-based solutions for the double JPEG
compression detection are susceptible to overfitting to the
dataset characteristics, as the detection features are learned
directly from the data. With some sources using image-
adaptive quantization tables, good generalization capabilities
are key for detectors to be used in real-world images, as
encountering unknown tables is very likely. Experimental
results have been presented to illustrate the inconsistency

between different sets of sources, evidencing that the detector
does overfit to the quantization table subset used in training.
Furthermore, the impact this can have on a more realistic
scenario can be significant, specially in those operating regions
where generalization is more challenging, as was seen in the
K → G pipeline. Additionally, it is noted that training with
a more diverse dataset also carries its own drawbacks, as a
larger image dataset might be needed to achieve comparable
results.

Considering all this, the problem of source mismatch
should be taken into consideration in practical double JPEG
compression detection, and further research is still needed to
develop alternative approaches to the holistic strategy, ideally
taking into account the more problematic operating regions
rather than blindly increasing the diversity of the training
dataset.
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