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Abstract—This paper studies the problem of Cover Source
Mismatch (CSM) in steganalysis, i.e. the impact of a testing
set which does not originate from the same source than the
training set. In this study, the trained steganalyzer uses state of
the art deep-learning architecture prone to better generalization
than feature-based steganalysis. Different sources such as the
sensor model, the ISO sensitivity, the processing pipeline and the
content, are investigated. Our conclusions are that, on one hand,
deep learning steganalysis is still very sensitive to the CSM, on the
other hand, the holistic strategy leverages the good generalization
properties of deep learning to reduce the CSM with a relatively
small number of training samples.

I. INTRODUCTION AND PRIOR WORKS

Steganalysis is the discipline concerned with the detection
of hidden data in innocuous cover media. Its history in the spe-
cific domain of natural images has been marked by tremendous
advances in detection performance since the introduction of
the supervised learning framework. The trend started with the
combination of the SPAM feature set and the Support Vector
machine in [1]. It continued with the undisputed success of the
Spatial Rich models combined with Ensemble classifier during
the BOSS competition [2]. This method was soon adapted to
the JPEG domain with feature sets such as DCTR [3] and
GFR [4]. The years 2015-2016 marked another step with the
introduction of deep neural network which quickly showed
their supremacy in the discipline with, in chronological order,
Xu-Net [5], [6], SRNet [7] and most recently the use of
EfficientNet [8] combined with transfer learning.

However, this steady increase of the performance of detec-
tors in steganalysis should be contrasted with the relative stag-
nation of the studies on the applicability of these approaches
to real world situations. Indeed, as stated at the beginning,
these approaches all rely on the classical supervised learning
framework. Therefore, they also inherit its limits, in particular,
the lack of generalization guarantees on unseen data.

In a real world scenario, the steganalyst wants to classify
one or several images as either cover or stego images. She
should do so knowing that, while a missed detection is
acceptable, a false alarm is very costly. Ideally then, she
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should be able to control the probability of false alarm of
her detector and try to minimize the probability of missed
detection. Sadly, the empirical performance computed with
supervised learning methods are only guaranteed to generalize
if the unseen data has been generated by using the same
probability distribution as the training data. The mismatch
between the training data distribution and the unseen data,
usually termed cover-source mismatch in steganalysis, has
been known to lead to a substantial loss of performance.

This phenomenon of cover-source mismatch was first doc-
umented in [9] where it was observed that training a classifier
on a dataset containing images only taken with a given camera
CAM1 and testing it on a second dataset built only using
another camera CAM2 led to far worse performance than
when the classifier was tested on a dataset built only with
CAM1. This issue became even more evident during the BOSS
competition where the organizers added images in the testing
set which were taken with a camera not present in the training
set. This induced a large drop in steganalysis performance
on these very images. What is often less highlighted is that
these outliers were not only taken with a unknown camera,
but that they had all followed a double JPEG compression
contrary to the other images which were simply compressed
once. This shows that the processing pipeline might also play
an important role on steganalysis performance.

The work in [10] studies this phenomenon by focusing
mainly on the impact of different cameras, though it in-
cidentally shows the greater impact of different processing
pipelines on the effects of cover-source mismatch. The same
authors also studied the effect of different resizing algorithms
on steganographic security, demonstrating the key role of the
processing pipeline.

Following the two ALASKA competitions [11], [12], deep
neural networks were shown to perform extremely well, with
quite low false alarm rates. This was quite a substantial
achievement since these two competitions’s datasets were
designed to be as diverse as possible regarding their camera,
ISO and processing pipelines. A possible conclusion after
these events was that the problem of cover-source mismatch
was not really relevant anymore since deep neural network
were able to cope with diversity. This paper proposes to study
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the actual truthfulness of this claim.
Our series of work [13], [14] was the first systematic study

of the impact of the different properties of natural images on
cover-source mismatch. This allowed a clearer understanding
of what properties of natural images actually mattered in
steganalysis. The conclusion was that cover source mismatch
rested on three main properties of images: the camera sensor,
the ISO setting and the processing pipeline.

This work also recalled two main strategies to mitigate the
impact of cover source mismatch:

• Atomistic approach: This approach is based on sub-
dividing a large dataset into smaller subsets containing
images with similar properties. The idea is then to train
specialized detectors for each of this smaller datasets.
This approach is inspired by forensic-aided steganalysis
methods such as [15], [16] where the authors used
forensic tools to build datasets with images having similar
statistical properties.

• Holistic approach: This approach is based on making the
training set as diverse as possible so that the rule learned
by the classifier is the least dependent on image sources
as possible. This strategy was explicitly proposed in [17]
and applied in [18] and [19].

In [14], it was shown that the holistic approach was very
costly sample-wise compared to the atomistic approach which
led to the idea of training set design to improve on steganal-
ysis.

The experiments of this work were however performed
during the years 2017-2018, at a time where deep neural
network were only starting to make their way into steganalysis.
Consequently, we only used the older techniques based on rich
models and classifiers. In this paper, we propose to update
the results of these older works by using the state of the art
approach of using EfficientNet with transfer learning.

II. COMMON EXPERIMENTAL SETTINGS

Over the course of this paper, several datasets are built by
fixing different parameters. Each dataset is always composed
of 10,000 grayscale cropped JPEG cover images of dimension
264 × 264 and their 10,000 stego counterparts. A training
set is built out of 70% of a given dataset, while the rest
corresponds to the testing set. All images come from the
ALASKA dataset [11], [12].

For each experiment, we also always produce a dataset
composed of 10,000 images called MIX which correspond to
the Holistic approach. It is built by taking the same number of
images in each individual datasets so that the class of images
generated from a given set of parameter is balanced with each
other class.

Steganalysis is always performed by using EfficientNet-
b3 [8] in its original configuration with the exception that
the stem stride is set to 1. The starting learning rate is
set to 0.25 and divided by 2 on each loss plateau. Due to
some datasets being more difficult than others, we performed
curriculum learning by starting on images embedded with a
payload of 0.7 bits per DCT coefficients (bpc) followed by 0.5

bpc and finally 0.3 bpc. With the exception of an especially
difficult processing pipeline, this ensured the convergence of
the networks for each datasets.

Steganalysis performance is presented as a table of PE –
see Eq (1) :

PE = min
PFA

1

2
(PFA + PMD) , (1)

where PFA and PMD are respectively the false alarm rate
and the rate of missed detection of the detector on the given
testing set. The PE is obtained by computing a ROC curve
from the soft outputs of the classifier. The rows of the table
correspond to the training set and the columns to the testing
set. The intrinsic difficulty of each dataset can be read on
the diagonal of the table while the impact of cover-source
mismatch – which we call source inconsistency in this paper
– is read by columns. To facilitate the reading of the numerous
results, we subtracted the PE of non-diagonal entry by the PE

of its corresponding diagonal entry: each non-diagonal entry
thus directly refers to the source inconsistency between the
training and testing set.

III. IMPACTS OF CAMERA AND ISO SETTING

To study the impact of the camera we selected five cameras
of varying quality which are presented in Table I. With the
exception of the Canon EOS 500D, we have tried to keep the
ISO relatively low, however one should understand that even if
two cameras use the same ISO setting, the resulting noise will
most certainly be different. As such, it is difficult to study the
impact of the camera in isolation from the ISO. Therefore, the
source inconsistency should here be interpreted as stemming
from both the camera and ISO. All images were developed
using Rawtherapee 5.8, in its default settings using the Amaze
demosaicking algorithm. We chose to use the current state of
the art steganographic algorithm for non side-informed JPEG
steganography, J-UNIWARD [20]. Results are presented in
Figure 1.

A first overall observation of these results is the large
diversity of both intrinsic difficulty and source inconsistency
even when the processing pipeline is fixed. It is difficult to
attribute the intrinsic difficulty to either the camera or the ISO
setting. For example, the iPad Pro and the HTC One A9, being
handheld devices, have both low quality camera sensors and
yet, despite the ISO of the HTC being higher than the ISO
setting of the iPad, they both have the same intrinsic difficulty.
On the other hand, the Canon EOS 500D, which has quite a

TABLE I
CHARACTERISTICS OF THE DIFFERENT CAMERA SENSORS USED IN THE

EXPERIMENTS OF THIS CHAPTER.

Camera name ISO Year Sensor size (mm) Megapixels

Canon EOS 500D 1600 2009 22.3× 14.9 15.1
Lumix DMC-GM1 200 2013 17.3× 13.0 16

HTC One A9 93 2015 7.1 (total) 13
Apple iPad Pro 20 2015 4.80× 3.60 12

Nikon D610 100 2013 35.9× 24 24.3
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high ISO setting compared to the other cameras, clearly has the
highest intrinsic difficulty among these datasets. Consequently,
we can conclude that both parameters play an important role
here.

Regarding source inconsistency, it is almost always larger
than 5% irrespective of the camera. An interesting case is
that of the Nikon D610, the highest quality camera among
those studied here. First it has the lowest intrinsic difficulty
compared to the other cameras. This is most likely due to the
quality of the sensor leading to almost noiseless images at low
ISO. Secondly, it has a somewhat low source inconsistency
with other sources but it leads to very high inconsistency with
other datasets when it is used as the training set. This shows
that even if a dataset has low source inconsistency with other
sources, it might still be an extremely bad choice as a training
set. Finally, the MIX strategy seems excellent at mitigating
the impact of CSM in this case as it always leads to smallest
source inconsistency when used as a training set.

IV. ISO SENSITIVITY

The impact of the ISO is easier to study in isolation by
fixing the camera. Therefore we used two in-house datasets
termed M9Base1 and M9Base2 taken with a single Leica M9
camera. These dataset were made by photographing exactly
the same scenes at different ISO which allows us to isolate
the impact of the ISO from every other parameter. Note that
scenes differ between M9Base1 and M9Base2 datasets. Once
again, all images were developed using Rawtherapee 5.8, in
its default settings. Results are presented in Figure 2-3.

As expected, the higher the ISO, the higher the intrinsic
difficulty of the dataset. See for example in Table 1 where
we go from an intrinsic difficulty of 10.5% at ISO160 up to
18.7% even though both the camera and the content of images

MIX Canon 500D DMC-GM1 HTC A9 Ipad Nikon D610

MIX 10.6 +3.6 +2.2 +2.9 +3.3 +0.9

Canon 500D +12.7 16.8 +27.9 +18.9 +18.1 +13.0

DMC-GM1 +6.4 +15.2 6.0 +9.4 +5.1 +1.1

HTC A9 +8.4 +5.5 +10.1 10.5 +7.4 +9.0

Ipad +9.2 +5.4 +4.5 +7.8 10.2 +3.5

Nikon D610 +19.8 +27.5 +16.1 +26.4 +23.7 1.6

Fig. 1. Table of PE for different cameras embedded with J-UNIWARD at
payload 0.3bpc.

MIX ISO160 ISO320 ISO640

MIX 19.3 +2.3 +1.5 +5.0

ISO160 +1.8 10.5 +2.0 +8.9

ISO320 +2.9 +4.5 7.3 +8.0

ISO640 +0.5 +9.7 +4.5 18.7

Fig. 2. Table of PE for different ISO on M9Base1 embedded with J-
UNIWARD at payload 0.3bpc.

are fixed. Also notice that semantic content does play a role
here as images in M9Base2 taken at ISO1000 have an intrinsic
difficulty similar to M9Base1 taken at ISO640.

In this setting, note that the source inconsistency is always
the lowest when using the MIX strategy, that is when training
on a dataset where all the different ISO are present. However
it should be noted that even in this case, source inconsistency
can still be pretty high with values which can go up to 5% in
the case of ISO640.

V. PROCESSING PIPELINE

Finally, in order to study the impact of the processing
pipeline, we fixed the camera and ISO of each dataset while
performing different kinds of processing operations for each
dataset.

Seven different processing pipelines using either Rawther-
apee 5.8 (RT) or the rawpy library were chosen. In the case
of Rawtherapee, each pipeline uses the default settings (using
the Amaze demosaicking algorithm) while varying a single
algorithm. In the case of rawpy, every setting is turned off,
except for the white balance which is set in camera mode.

We now describe each of the pipelines:
• Three demosaicking algorithms: Amaze (RT), Bilinear

(rawpy) and PPG (rawpy). The Amaze algorithm is
one of the current state of the art among (open-source)
demosaicking algorithms. The PPG algorithm is a simpler
and faster algorithm which is used to generate BossBase.
Finally, the bilinear algorithm (simplified as LIN) is the
simplest and fastest non-trivial demosaicking algorithm
possible, at the cost of large loss of quality compared to
the other two.

• One sharpening algorithm from RT with two sets of
parameters – USM soft and USM hard. The algorithm
is a modified version of the classic Unsharp Mask algo-
rithm [21] used to enhance the edges and contrast of an
image. The first set only applies soft sharpening while
the second applies very aggressive edge enhancement.
The latter amplified the noise so much that our network
usually did not converge due to resulting difficulty of the
dataset. In theses cases, we omit to present the results.

• One denoising algorithm from RT with two sets of
parameters – DEN soft and DEN hard. The algorithm
uses the Directional Pyramid Denoising based on wavelet
decomposition [22]

MIX ISO500 ISO1000 ISO1250

MIX 17.5 +3.2 –0.9 +1.8

ISO500 +2.0 15.5 +2.1 +5.6

ISO1000 +3.8 +7.9 18.0 +2.0

ISO1250 +2.0 +8.1 –1.8 19.9

Fig. 3. Table of PE for different ISO on M9Base2 embedded with J-
UNIWARD at payload 0.3bpc.
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MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 10.0 +3.4 +1.0 +1.3 +1.5 * +1.9 +0.6

Amaze +14.4 10.2 +14.4 +24.2 +3.5 * +8.8 +28.0

LIN +31.6 +32.4 0.3 +37.3 +26.1 * +34.4 +34.2

PPG +19.6 +30.0 +15.8 2.7 +23.7 * +30.5 +22.2

USM soft +18.8 +6.7 +14.8 +34.6 19.5 * +18.9 +33.0

USM hard +39.8 +39.6 +49.0 +46.8 +30.3 * +46.9 +48.8

DEN soft +15.0 +15.5 +11.9 +30.7 +14.7 * 3.0 +17.4

DEN hard +19.3 +33.8 +13.4 +34.5 +26.4 * +10.0 0.6

Fig. 4. iPad Pro – ISO 20. Table of PE for different processing pipelines
embedded with J-UNIWARD at payload 0.3bpc and steganalysis performed
with EfficientNet-b3. A column is starred (*) if EfficientNet did not converge
for the cell on the diagonal.

MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 17.1 +6.0 +0.0 +3.8 +0.4 * +4.5 +0.3

Amaze +17.4 16.8 +34.1 +27.0 +7.8 * +17.4 +13.1

LIN +23.0 +33.2 0.1 +48.0 +13.9 * +45.2 +34.2

PPG +20.8 +30.9 +30.0 1.5 +13.8 * +40.1 +38.1

USM soft +29.5 +18.3 +47.3 +46.3 36.0 * +45.9 +47.9

USM hard +32.5 +33.0 +49.6 +47.6 +13.8 * +47.4 +49.7

DEN soft +17.9 +18.7 +13.7 +28.9 +8.7 * 2.3 +4.2

DEN hard +17.0 +33.1 +5.6 +48.5 +13.9 * +30.6 0.1

Fig. 5. Canon EOS 500D – ISO 1600

A first overall observation is that the impact of the pro-
cessing pipeline on Cover-Source Mismatch is dramatic, with
source inconsistency which can reach 49% even though the
camera, the ISO and the scenes present in the datasets are
identical. This observation was already made in [14] but it
was hoped that using neural network would allow for better
generalizations between sources which is clearly not the case
in practice. A good news however is that using a training set
which includes all the possible processing pipelines does allow
for better generalization, even though we kept the number of
samples identical for all datasets. This generalization results
should however be studied more thoroughly as the diversity
of processing pipeline “in the wild” can get quite difficult for
the steganalyst to handle.

Now, going to an analysis of each individual processing
pipelines, we can observe that pipelines which amplifies details
and edges – USM and the Amaze algorithm – lead to higher
intrinsic difficulties than pipeline which tend to smooth the
image such as denoising and linear demosaicking. This is to
be expected, the more textured an image is, the more difficult
it is to model its content and thus to separate it from the stego
signal.

It is also interesting to note that processing pipelines which
perform similar operations but with different parameters tend
to have lower source inconsistency. For example, in the case
of the Nikon D610 camera, the two USM pipelines have a
source inconsistency no higher than 1.5% but higher than at
least 4% for every other pipeline except Amaze. All results
are shown for different cameras in Figure 4-8.

MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 9.3 +3.7 +2.4 +2.7 +3.7 +3.2 +3.1 +1.6

Amaze +8.3 6.0 +18.4 +23.9 +2.7 +4.2 +6.2 +20.2

LIN +24.8 +29.5 0.5 +29.7 +30.5 +23.7 +28.5 +19.1

PPG +15.1 +24.3 +19.4 3.3 +25.2 +19.1 +16.3 +9.3

USM soft +8.5 +2.6 +10.5 +27.9 11.0 +2.0 +8.2 +18.9

USM hard +11.0 +3.6 +18.6 +31.3 +1.2 19.4 +9.1 +33.1

DEN soft +7.9 +11.2 +8.5 +18.2 +13.3 +10.1 2.7 +3.1

DEN hard +12.9 +26.9 +12.6 +13.4 +23.5 +18.7 +7.6 1.0

Fig. 6. DMC-GM1 – ISO 200

MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 13.6 +3.4 +1.3 +2.4 +4.1 * +1.8 +1.1

Amaze +13.7 10.5 +36.5 +25.5 +9.2 * +7.9 +21.0

LIN +28.5 +31.2 0.1 +39.2 +25.0 * +38.3 +31.5

PPG +22.4 +33.3 +34.9 3.1 +25.3 * +33.3 +28.0

USM soft +10.9 +3.7 +11.2 +26.5 22.4 * +9.9 +13.1

USM hard +35.9 +39.3 +48.7 +45.8 +27.4 * +46.6 +49.3

DEN soft +18.8 +22.1 +30.0 +36.1 +19.7 * 3.0 +12.3

DEN hard +17.4 +34.8 +16.0 +34.3 +25.4 * +10.6 0.6

Fig. 7. HTC One A9 – ISO 93

VI. IMPACT OF THE IMAGE CONTENT

The main thesis resulting from of our original cover-source
mismatch study in [14] is that the source of cover-source
mismatch is the differences of noise properties of images
between the training and testing sets. This lead us to focus
on the camera sensor, ISO setting and processing pipelines.

However, another element of natural images which might
play a role in cover-source mismatch is the actual content
of an image. Intuitively, if a training dataset consists only of
very smooth images such as blue skies whereas the testing
set is made out of very textured images, one might expect
significant cover-source mismatch. To test this hypothesis we
performed exactly this experiment by creating four datasets
each made out of 10,000 images. Each dataset is made out of
images captured with a Sony Alpha 7 camera and developed
either with the USM soft processing pipeline or the DEN soft
processing pipeline as described in Section V. Furthermore
each dataset contains only images selected to be smooth
(SMO) or textured (TEX).

The steganography and steganalysis is performed in the
same way as for the previous experiments. Results appear in
Figure 9.

Looking at these results it is important to highlight that
even if datasets share a processing pipeline and a camera,
we can still observe the impact of cover-source mismatch. In
this experimental setting, which is a pretty extreme case of
“content mismatch”, we observe source inconsistency of up
to 13.6% for the USM soft pipeline and 12.5% for the DEN
soft pipeline.

On the other hand, it is also important to note that incon-
sistencies when the pipeline is fixed are always the lowest
inconsistencies we observe in the experiment. For example, the
source inconsistency between DEN and USM reaches 31.6%
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MIX Amaze LIN PPG USM soft USM hard DEN soft DEN hard

MIX 3.3 +2.1 +0.5 +0.6 +2.8 +2.3 +0.8 +0.8

Amaze +1.7 1.6 +2.0 +4.1 +1.0 +1.4 +7.6 +1.1

LIN +11.8 +20.0 0.2 +12.8 +20.9 +19.5 +5.7 +3.0

PPG +2.5 +6.4 +0.9 0.5 +8.0 +8.0 +0.7 +0.9

USM soft +0.7 +0.8 +1.5 +3.9 2.8 +1.4 +4.6 +3.4

USM hard +1.6 +1.0 +2.5 +2.8 +0.8 5.7 +4.5 +3.5

DEN soft +0.5 +2.5 +0.9 +1.7 +3.9 +3.7 1.4 +0.3

DEN hard +3.6 +7.2 +2.6 +8.4 +6.2 +5.0 +1.7 0.6

Fig. 8. NIKON D610 – ISO 100

USM soft | TEX DEN soft | TEX USM soft | SMO DEN soft | SMO

USM soft | TEX 29.3 +31.6 +6.2 +12.1

DEN soft | TEX +13.4 3.4 +25.3 +1.3

USM soft | SMO +11.6 +16.0 7.0 +0.8

DEN soft | SMO +19.7 +12.5 +11.2 0.5

Fig. 9. Sony alpha 7. Table of PE for different processing pipelines and
different content types for images embedded with J-UNIWARD at 0.3bpc.
The SMO datasets only contain smooth images while the TEX dataset contain
texture images.

for the TEX while it only of 12.5% if we train on DEN TEX
and test on DEN SMO.

The conclusion is similar to what was found in [14]: content
can lead to cover-source mismatch but differences in the
processing pipeline largely dominate.

VII. CONCLUSION AND PERSPECTIVES

This paper is a short update on the systematic study on
cover-source mismatch using the current state of the art in
steganalysis. The results of this paper paint a more nuanced
picture. Indeed a common observation on all four properties
of natural image studied herein – camera, ISO, processing
pipeline and content – is that cover-source mismatch is always
very strong with EfficientNet, provided that the testing set
contains images with different properties than the training set.
On the other hand, the holistic/MIX strategy, that is using a
training dataset containing a diverse set of properties, is very
effective in mitigating the effect of cover-source mismatch
even with datasets which are quite small.

This a real difference with steganalysis using rich models
where we observed in [14, Sec. 9] that the holistic strategy
demanded a lot more samples to perform as well as the case
where no mismatch is present. Obviously, the experiments
presented in this paper are somewhat limited to a single
(though prevalent) steganographic algorithm – J-UNIWARD
– and to a single deep network architecture – EfficientNet-b3.
However, we believe this setup is sufficiently representative
of the current environment of steganography and steganalysis
so that these results should generalize to other modern algo-
rithms.
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[2] P. Bas, T. Filler, and T. Pevný, “Break Our Steganographic System
— the ins and outs of organizing BOSS,” in Information Hiding, 13th
International Workshop. Prague, Czech Republic: vol.6958, Springer,
May 2011, pp. 59–70.

[3] V. Holub and J. Fridrich, “Low-Complexity Features for JPEG Ste-
ganalysis Using Undecimated DCT,” IEEE Transactions on Information
Forensics and Security, vol. 10, no. 2, pp. 219–228, Feb. 2015.

[4] X. Song, F. Liu, C. Yang, X. Luo, and Y. Zhang, “Steganalysis of
Adaptive JPEG Steganography Using 2D Gabor Filters,” in Proceedings
of the 3rd ACM Workshop on Information Hiding and Multimedia
Security. Portland Oregon USA: ACM, Jun. 2015, pp. 15–23.

[5] G. Xu, H.-Z. Wu, and Y.-Q. Shi, “Structural Design of Convolutional
Neural Networks for Steganalysis,” IEEE Signal Processing Letters,
vol. 23, no. 5, pp. 708–712, May 2016.

[6] G. Xu, “Deep Convolutional Neural Network to Detect J-UNIWARD,”
in IH&MMSEC 5. Philadelphia, USA: ACM, Jun. 2017, pp. 67–73.

[7] M. Boroumand, M. Chen, and J. Fridrich, “Deep Residual Network
for Steganalysis of Digital Images,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 5, pp. 1181–1193, May 2019.

[8] M. Tan and Q. V. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” arXiv:1905.11946 [cs, stat], Sep.
2020, arXiv: 1905.11946.

[9] M. Goljan, J. Fridrich, and T. Holotyak, “New blind steganalysis and its
implications,” E. J. Delp III and P. W. Wong, Eds., San Jose, CA, Feb.
2006, p. 607201.
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