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Abstract—Cover-source mismatch (CSM) refers to the use
of a steganographic detector on images with a very different
probability distribution it has been trained on. This can have
a detrimental effect on its accuracy preventing the use of mod-
ern steganalytic tools outside laboratories. Despite CSM being
introduced almost fifteen years ago, there is no formal definition
and no adopted measures for comparing different solutions.
This work, therefore, formalizes the cover-source mismatch and
proposes and discusses possible error measures. Equipped with
these tools, we propose a principled approach to train holistic
detectors while minimizing the effects of CSM and experimentally
compare them to the prior art, discussing their strength and
weaknesses.

I. MOTIVATION

Steganography is the art of hiding a secret message into
an innocuous-looking object, such that the presence of the
message is covert. Steganalysis is the opposite problem of
detecting objects with a hidden message. In this paper, the
objects of interest are digital images, but the theory developed
below are equally applicable to other carriers as well.

Modern detectors of hidden messages hidden in digital
images (steganography) are usually implemented by machine
learning methods. They have a very large number of param-
eters, which are optimized on a set of images (usually called
a training set). When they are applied to images with very
different statistical properties, their accuracy can be poor. This
phenomenon is called cover-source mismatch and it nowadays
represents one of the biggest obstacles in moving steganalysis
from laboratories to practice.

The first reported evidence of cover source mismatch (CSM)
was published in [2]. At the same time, in [13] has been
proposed to detect the double compression in JPEG images
and use the corresponding detector on them (this approach
would later become known as atomistic). CSM was also
mentioned in [15], where authors naı̈vely claimed that to
mitigate it suffices to optimize the detector on a sufficiently
large mix of cover-sources (this approach would later be called
holistic). CSM has become a discussed topic during the BOSS
contest [1], where authors inadvertently introduced it in the
test set, but despite it, there has been to date surprisingly
little work in this direction. Ref. [8] studied different methods
to select detectors in atomistic approach. Alaska contest and
its sequel [3, 4] were designed to include CSM, but to our
knowledge, most competitors used holistic approach and no
fundamentally new method were derived. The most serious
study [6] was intended to identify sources of CSM, concluding
that ISO settings and preprocessing are among the largest
contributors.

Despite almost fifteen years have passed since the descrip-
tion of CSM, the problem has never been mathematically
formalized, nor a proper error measures discussed. This paper
fills these gaps.

Furthermore, the paper enumerates the prior art in CSM
and it proposes a variant of a holistic approach minimizing
the regret for not using the detector specialized for a given
cover-source. All discussed approaches to CSM are compared
on a subset of the Alaska dataset using the same settings
as in [6]. The experiments use a relatively simple stegano-
graphic algorithm, nsf5 [5] with simulated optimal coding,
and relatively simple detectors relying on 22510-dimensional
CCJRM feature set [11]. The rationale behind this decision is
relatively low computational complexity decreasing the cost
of the experiments. The experimental verification with more
complex detectors based on convolution neural networks and
advanced steganographic algorithms is left to future work.

II. FORMALISING THE COVER-SOURCE MISMATCH

A. Definition of terms

We denote the image x, its corresponding label y, the space
of all images X , and the space of labels Y = {cover, stego}.

1) Cover source: The distribution of cover images depends
on many factors, such as the image acquisition device (camera,
flatbed scanner), settings of the device (ISO, zoom, aperture,
shutter time, etc.), captured scenes, post-processing of im-
ages (sharpening, white balance, gamma correction, cropping,
etc.), and possibly lossy image container (JPEG compression
and re-compression, JPEG codec). We denote the concrete
combination of the parameters by ω and the set of all their
possible combinations by Ω. Therefore ω uniquely defines
the probability distributions of cover images P c(x|ω) (if it is
clear from the context, we drop the arguments for the sake of
brewity). The set of all possible distributions of cover images
is a convex hull

Pc =

{
n∑
i=1

λiP
c(x|ωi)

∣∣∣∣∣
n∑
i=1

λi = 1), λi ≥ 0, ωi ∈ Ω, n ∈ N

}
,

(1)
as images from different P c(x|ωi) will be mixed in a set,
where they cannot be distinguished (for example images taken
with different ISO, gamma correction, level of sharpening,
etc.).

Definition: Every element P c ∈ Pc is called a cover-
source.
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2) The effect of hiding the message: The distribution of
images subjected to the detection is influenced by the algo-
rithm used to embed the message, the distribution of embedded
messages, the distribution of steganographic keys, and the
proportion of cover and stego images. Specific combination,
γ ∈ Γ, together with distribution of cover images P c deter-
mines the distribution of stego images P s(x, y|P c, γ). Unlike
established notation, it assumes (i) realizations of P s includes
cover images and (ii) the support of P s is a cartesian product
X × Y but note that Y is not observed by the steganalyst.
The peculiarities are used to simplify notation. While this
work assumes single fixed γ ∈ Γ, the general notation is
introduced since the problem of CSM is similar to that of
universal steganalysis when the algorithm used to embed the
message or the distribution of messages is not known.

3) Cover source mismatch: Contemporary approach to ste-
ganalysis implements the detector by a function f(x|θ) : X →
{cover, stego} parametrized by θ ∈ Θ.1 Parameters θ are
found by minimizing error (or more generally a loss) estimated
on a set of training images X trn = {(xi, yi)}ni=1, distributed
according to (xi, yi) ∼ P s(x, y|P trn, γ), i ∈ {1, . . . , l}, where
P trn ∈ Pc. Due to the large number of parameters influencing
the distribution of images, it is almost guaranteed that testing
images analyzed by f(x|θ) will follow a different distribution.

Definition: Cover-source mismatch occurs iff P s(P tst, γ) 6=
P s(P trn, γ).2

B. Measuring the error

The main purpose of error measures is to tell steganalyst,
how well its detector will perform on testing images (in
practice). Thus, the definition should be closely related to the
expected use.

The most established method in steganography is PE (de-
fined below in Equation (2)), although there were several
attempts to replace it with something more related to prac-
tice [4, 12, 14, 9]. All the above attempts do not take
cover-source mismatch into the account, i.e. they assume
P trn = P tst. These works are not reviewed here, as the object
of interest is a cover-source mismatch, how to measure it, and
which measures are aligned with objectives.

a) Clairvoyant error: : Most steganalytic literature as-
sumes that the CSM does not happen, therefore P trn = P tst.
Clairvoyant error allows P trn 6= P tst, but P tst has to be
known. Under these conditions, the principled error measure
of detector f(x|θ) reflecting the real costs of its use is

E(x,y)∼P s(x,y|P tst,γ)[c(y)I[f(x|θ) 6= y]], (2)

where c(y) is the cost of making error on class y and I[·]
denotes an Iverson bracket which is one if its argument is
true and zero otherwise. In practice, the distribution and P tst

is unknown and the expectation is replaced by an estimate

1θ should be understood here in the wider context including choice and
architecture of classifiers.

2Since we assume γ to be the same for training and testing, this condition
can be translated to P tst 6= P trn for all reasonably well behaving stegano-
graphic methods.

from a finite number of realizations from P tst (testing set).
Furthermore, most steganographic literature assumes that re-
alizations of P s(x, y|P, γ) have equal number of cover and
stego images and the cost c(y) = 1. Such error is called PE

and its popularity stems from the fact that neither fraction of
cover and stego images nor c(y) are known.3 The clairvoyant
error is very unrealistic, as it assumes the perfect knowledge
about the future use of the detector.

b) Maximum error: : When P trn 6= P tst and P tst is
not known (a true CSM case), it is difficult for the stegan-
alyst to estimate, how his detector will perform in practice.
An approach used in robust classification is to assume that
distance δ(P trn, P tst) between P trn and P tst (measured for
example by Total Variation) is bounded by some constant ε.
This enables to define the error as maximum

max
δ(P,P trn)≤ε

E(x,y)∼P s(x,y|P,γ)[c(y)I[f(x|θ) 6= y]]. (3)

Computing the maximization over a set {P |δ(P, P trn) ≤ ε} is
generally difficult. In practice, especially in steganalysis where
the accurate and tractable model of images is missing, this
is to be replaced by maximization over the finite number of
cover-sources {P1, . . . , Pk}. Note that the empirical estimate
of maximum error upper-bounds the error over a convex hull
of {P1, . . . , Pk}.

The main drawback of maximum error is that its value is
determined by the performance on the most difficult cover-
source and therefore it hides the performance on other cover-
sources. As an example, imagine two cover-sources P c

1 and P c
2

such that the best achievable error of detecting stego images
in a cover-source P1 with embedding γ, PE(P1, γ), is much
smaller than that on the other cover-source P2, PE(P1, γ), i.e.
PE(P1, γ) � PE(P2, γ). In this case, the error of a detector
f(x|θ) measured by maximum error will be dominated by
the error on the cover-source P2 and the performance on P1

might be arbitrarily poor while smaller than that on P2. This
is clearly an undesirable behavior.

c) Maximum regret: : To fix the weakness of maximum
error, the steganalyst might measure a difference in errors
of the detector f(x|θ) and the best achievable detector on a
given cover-source. The error of the best achievable detector
on cover-source P and embedding parameters γ, PE(P, γ),
will therefore serve as a calibration.

max
δ(P,P trn)≤ε

E(x,y)∼P s(x,y|P,γ)[c(y)I[f(x|θ) 6= y]]− PE(P, γ).

(4)
This formulation tells the steganalyst the maximal deviation
from optimum over cover-sources. In practice, the maxi-
mization over infinite set {P |δ(P, P trn) ≤ ε} will be re-
placed by a maximization over the finite set of cover-sources
{P1, . . . , Pk}. Similarly, {PE(Pi, γ)}ki=1 cannot be computed
exactly but have to be estimated by training a classifier.

Remark: Replacing max with mean in Equations (3)
and (4) makes both equations equal to Equation (2) with a

3Few works [4, 12, 9] has used other measures of error than the
prevalent PE. For the sake of simplicity, this work will use PE.
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suitably selected P tst (Equation (4) would contain additional
term meanδ(P,P trn)PE(P, γ) constant with respect to f(x|θ)).
Setting PE(P, γ) to zero in Equation (4) makes it equivalent
to Equation (3).

III. COMPARED METHODS ROBUST TO COVER-SOURCE
MISMATCH

This section describes methods compared in the experimen-
tal Section. While some of them have been already published,
we discuss the optimization of criterion (4). The exposition is
divided into two parts: the first describes different approaches
to train detectors robust to CSM and the second discusses how
linear and non-linear classifiers were optimized. All classifiers
assume images to be described by features, which is done to
save the computational resources.

A. Holisitic

Refs. [15, 6] suggests a holistic approach to CSM consisting
of training a single detector on all available cover-sources. This
corresponds to minimizing error in Equation (2) with respect
to f(x|θ) with an Iverson bracket replaced by differentiable
surrogate and with a fixed P trn, which usually follows the
number of images from each cover-source available during
optimization of the detector. If P trn is close to P tst, this is
from a theoretical point of view a very good approach. A
linear holistic detector [6] (denoted as holistic linear) was
implemented by Ridge Regression (see Subsection IV-A).
Ref. [15] has used a non-linear classifier, specifically Support
Vector Machine with Gaussian Kernel. Below, it was replaced
by a multi-layer perceptron due to better scaling with respect
to the number of training samples (see Subsection IV-A). This
approach is denoted later as holistic MLP. The non-linear
classifier is used, since the cover and stego images in the
mixture of cover-sources might be difficult to separate.

B. Atomistic

In atomistic approach [6, 13, 8], the steganographer creates
one detector for each cover-source available during training.
During steganalysis, it outputs the decision of the most suitable
detector for a given image. The first part, creating a detector
for each cover-source, is straightforward. Below, linear clas-
sifiers were used as in [6], as they should be sufficient here
due to the high number of features describing each object and
relatively low number of training samples from each cover-
source (see below).

The main difficulty of the atomistic approach stems from
finding the best classifier from the pool for a given image.
Sometimes, this selection can be done on basis of available
information (for example a quality factor (QF) in JPEG images
used in [13]), but more frequently it has to be estimated.
In this work, the cover-source is estimated by a trained
classifier (multilayer perceptron constructed as described in
Subsection IV-A). The experimental section compares two
variants: predicting just the camera model (the final detector is
called atomistic QF predicted) and predicting camera model
and quality factor (the final detector is called atomistic QF

known). While the QF can be read from a JPEG container, the
authors were curious to see the difference inaccuracy.

C. Maximum regret
The Equation 4 can be used as a loss function in the

optimization of a detector as long as the Iverson bracket is
replaced by a differential surrogate (the choice usually depends
on the used classifier). Here, f(x|θ) were implemented as a
multi-layer perceptron (see Section IV-A).

As already mentioned, the maximization over the set
{P |δ(P, P trn) ≤ ε} in Equation (4) has been replaced by max-
imization over finite number of cover-sources {p1, . . . , pk}.
The best achievable error per cover-source, PE(pi, γ), i ∈
{1, . . . , k}, has been estimated by the error of the linear
classifier on the validation set. During optimization, cover-
source with largest regret on the validation set was selected
in each training step. But the gradients for the update of
model parameters were computed on the training set. This
dichotomy stems from the fact that due to the relatively small
number of samples, it is trivial to achieve zero error on all
cover-sources in the training set. The detector was trained for
750 000 training steps.

IV. EXPERIMENTAL DETAILS

A. Implementation details of classifiers
1) Linear classifier: All linear classifiers f(x|w, b) =

w>x+b with parameters w and b were trained using Ridge Re-
gression [7], which replaces Iverson bracket in Equation (2) by
a differentiable L2(y, ŷ) = 1

2 (y− ŷ)2. This has the advantage
that w has a closed-form solution as w = (X>X+λI)−1X>y,
where X ∈ Rn,d is a matrix containing features extracted from
training images in their rows, y ∈ −1,+1n is vector with
corresponding labels, and λ ≥ 0 is a regularization parameter.
Its value was selected from λ ∈ {10i|i ∈ {−7,−6, . . . , 3, 4}}
to minimize the PE estimated on the validation dataset.

2) Non-linear classifier: All non-linear classifiers were
implemented by multi-layer perceptron. Due to its large flex-
ibility in terms of architecture and training parameters, a
random search selecting the best configuration with minimal
PE error on the validation dataset was used. Architectures
were sampled from the following Cartesian product of: (1, 2
or 3) hidden layers, (8, 16, 32, 64, or 128) number of neurons,
use of batch normalization, and (ReLU, tanh) activation
function of hidden layers. The optimization was done with an
Adam [10] variant of gradient descend with full batch, with
learning rate sampled from the set {ab|a ∈ {2, 4, . . . , 10}, b ∈
{1× 10−4, 1× 10−5, 1× 10−6}} and weight decay parameter
from the set {0}

⋃
{1 × 10−2, 1 × 10−3, . . . , 1 × 10−6}. The

network was trained for 200 000 iterations with full batch
minimizing binary cross-entropy with early stopping, which
has selected the best model with lowest PE on the validation
set.

B. Image database
A cover-source is simulated by camera model and by the

quality factor, keeping all other parameters of the process-
ing pipeline constant. Raw images were sourced from the
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cover source
Camera name ISO no. of images labels

Panasonic FZ28 100 1164 A
Nikon D610 100 1060 B
iPad Pro (12.9” gen. 2) 20 1571 C
Canon EOS 500D 1600 1665 D
Sony ILCE-7R 800 926 E
Pentax K10D 400 835 F
Panasonic GM1 3200 417 G

TABLE I
LABELS OF COVER SOURCES, THEIR CAMERA MODELS AND ISO VALUES

OF ITS IMAGES, AND THEIR NUMBER OF IMAGES AVAILABLE FOR
EXPERIMENTS.

ALASKA dataset, from which seven camera models with a
large number of images and with different ISO sensitivity were
selected. For brevity, cover-sources are denoted by letters A–
G, their details can be found in Table I. Images were converted
from RAW format to TIFF using RawTherapee version 5.4
with the default neutral profile. The TIFF images were cropped
to 512×512 pixels. These were then converted to JPEG images
with quality factors 75 and 100 using and 4:4:4 subsampling.
The conversion was performed in Python 3.6.9 using Pillow
8.1.2 library.

The creation of stego images mimicked [6]. They were
created by simulating embedding of a random message with
payload 0.04 bits per AC coefficient (bpAC) by nsF5 algorithm
with optimal embedding. All images were represented by cc-
JRM [11] feature vectors with dimension 22510.

Data from each cover-source were split into training, val-
idation, and testing sets according to the 6:2:2 ratio. This
split was three times repeated, therefore all results reported
below are averages from metrics computed on the testing set
(unless said otherwise). Furthermore, the seven cover-source
identified by letters A–G (see Table I for their detail) were
divided such that images from cover-sources F and G were
never part of the training set nor the validation set. They
were only used for computing metrics on the testing set, which
allowed to study accuracy on cover-sources unseen during the
development of the detector. The validation set was used to
optimize all hyperparameters described in Section IV-A.

V. EXPERIMENTAL RESULTS

Each row in Table (II) contains quantities computed on
the testing set from a given cover-source (for camera models
corresponding to letter see Table IV). The quantities in a
column captioned Clairvoyant contains PE of a linear detector
trained and tested on the same cover-source indentified by the
row. This is an optimistic (”optimal”) result, to which other
detectors are compared to. The remaining quantities contain
PE of a corresponding detector (in a column) on a given cover-
source (in a row) minus PE of the clairvoyant detector. This
means that if there is a negative number, the detector is on that
cover-source better than clairvoyant. Authors confess that they
have not anticipated seeing negative numbers, which are likely
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A 75 7.9 0.4 -1.6 1.1 -0.1 -0.2
B 75 5.7 -0.1 -0.3 0.6 0.3 0.1
C 75 9.0 -0.3 -0.1 0.6 0.5 0.5
D 75 2.0 0.7 0.4 1.0 0.0 0.0
E 75 8.3 -2.1 -2.6 -1.3 0.2 0.0
F 75 7.2 -2.3 -1.0 -1.0 -0.2 -0.2
G 75 11.5 -1.0 2.2 3.4 11.1 9.9
A 100 40.7 -1.3 -3.4 -0.3 -0.7 0.0
B 100 34.0 -2.5 -0.9 0.9 0.1 0.0
C 100 41.4 -2.0 -2.5 -1.0 0.2 0.2
D 100 22.4 11.3 7.0 -0.3 0.0 0.0
E 100 38.6 -0.4 -1.6 1.4 -0.4 -0.2
F 100 39.8 -0.8 -2.6 1.3 0.3 0.9
G 100 44.4 -0.6 -2.8 -1.2 0.8 0.6

TABLE II
EACH ROW CONTAINS QUANTITIES ESTIMATED FROM THE TESTING SET

ON ONE COVER-SOURCE. COLUMN DENOTED BY Clairvoyant PE , OTHER
COLUMNS CONTAINS PE MINUS PE OF Clairvoyant ON THE SAME ROW.
NEGATIVE NUMBERS THEREFORE INDICATES THAT THE DETECTOR IS

BETTER THAN Clairvoyant.
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A
–E

mean PE 21.4 20.4 21.3 21.0 21.0
max. PE 39.5 38.9 40.4 41.6 41.6

max. regret 11.3 7.0 1.4 0.5 0.5

A
–G

mean PE 22.3 21.6 22.7 23.2 23.2
max. PE 43.8 41.7 43.3 45.2 45.0

max. regret 11.3 7.0 3.4 11.1 9.9

TABLE III
ERRORS (2), (3), AND (4) AGGREGATED OVER COVER SOURCES A–E AND

A–G FROM VALUES IN TABLE II.
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A 75 77.6 1.3 11.7 0.1 6.4 0.0 0.0 0.0 0.0 0.0
B 75 0.9 96.7 1.9 0.0 0.9 0.0 0.0 0.0 0.0 0.0
C 75 15.1 1.3 81.9 0.0 6.7 0.0 0.0 0.1 0.0 0.0
D 75 0.1 0.0 0.0 99.9 0.0 0.0 0.0 0.0 0.0 0.0
E 75 6.4 0.6 4.5 0.0 86.0 0.0 0.0 0.0 0.0 0.0
A 100 0.0 0.0 0.0 0.1 0.0 82.1 0.0 6.8 0.0 7.6
B 100 0.0 0.0 0.0 0.0 0.0 0.2 100.0 0.3 0.0 0.0
C 100 0.0 0.0 0.0 0.0 0.0 10.0 0.0 90.3 0.0 2.3
D 100 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 99.9 0.0
E 100 0.0 0.2 0.0 0.0 0.0 7.7 0.0 2.6 0.1 90.1

TABLE IV
CONFUSION MATRIX OF THE DETECTOR OF COVER-SOURCE PREDICTING

CAMERA MODEL AND THE QUALITY FACTOR.
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caused by the fact that holistic and maximal regret classifiers
are trained on all samples.

Table (III) contains error measures introduced Section II-B,
specifically average PE, where each cover-source has the
same probability of occurrence (Equation (2)), maximum
error over cover-source (Equation (3)), and finally maximum
regret (Equation (4)). Comparing the approaches using these
quantities, suggests that if all testing cover-sources have been
present in the training set, the atomistic approach is the best
on average PE and surprisingly also on maximum regret.
Its great performance is likely caused by the high accuracy
of the cover-source detector which is generally above 95%
(see Table IV). On maximum PE, the best results have
been achieved by the holistic approach. When the testing set
contains additional cover-sources, maximum regret seems to
be the best on maximal regret and maximal error. It is also
very good on mean PE, where it is just by 0.4 worse than the
best linear holistic approach. These results, together with good
results on cover-sources A–E make it a very good option.

VI. DISCUSSION

This paper has formalized the cover-source mismatch in
terms of probability distributions of images, which allowed
to define different concepts of errors aligned with different
objectives of the steganalyst: while clairvoyant error assumes
the knowledge of the distribution of images on the testing
set, maximum error and maximum regret enable to principally
integrate uncertainty about it.

Using these types of errors, prior art approaches to CSM
and the proposed minimization of maximal regret were ex-
perimentally compared on the subset of the Alaska 2 dataset.
According to the results, atomistic approach is very good if
cover-sources from the testing set are present in the training
set, maximum regret is very good even when they were not
known during training. This seems that maximum regret deliv-
ers more robust holistic classifier. Unfortunately, the training
complexity of both maximum regret and atomistic approaches
is very high, as in both cases one needs to train classifier per
cover-source.

VII. ACKNOWLEDGEMENT

The research leading to this paper has received funding
from by OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765
”Research Center for Informatics”, by Czech Ministry of Ed-
ucation 19-29680L, and the European Union’s Horizon 2020
research and innovation programme under grant agreement
No. 101021687. This material reflects only the authors views
and the Commission is not liable for any use that may be made
from the information contained therein.

REFERENCES

[1] P. Bas, T. Filler, and T. Pevný. ” break our steganographic
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[15] T. Pevný, P. Bas, and J. Fridrich. Steganalysis by
subtractive pixel adjacency matrix. IEEE Transactions on
information Forensics and Security, 5(2):215–224, 2010.

1046


