
A Deep Learning Based Acceleration of Complex
Satellite Resource Management Problem

Tedros Salih Abdu∗, Steven Kisseleff∗, Lei Lei†, Eva Lagunas∗, Joel Grotz‡ and Symeon Chatzinotas∗
∗Interdisciplinary Centre for Security, Reliability and Trust (SnT), University of Luxembourg, Luxembourg
†School of Information and Communications Engineering, Xi’an Jiaotong University, Xi’an, China

‡ SES Engineering, Betzdorf, Luxembourg
Email: ∗tedros-salih.abdu@uni.lu

Abstract—Demand-based algorithms have been widely studied
in the satellite community, where the satellite’s radio resources
are allocated according to the on-ground users’ demands. Hence,
we can accommodate the increasing demand while efficiently
utilizing satellite resources. However, these algorithms have high
computational time because they are required to optimize more
parameters, which hinders the practical implementation of the
algorithms. In this paper, we propose a methodology to alleviate
the computational complexity of demand-aware bandwidth and
power allocation algorithm by combining conventional optimiza-
tion and deep learning (DL). Hence, conventional optimization
allocates the radio resources, while DL accelerates the computa-
tion. The simulation result shows that the proposed approach has
lower computational time while efficiently utilizing the resource
of the satellite.

Index Terms—Bandwidth allocation, deep learning, power
allocation.

I. INTRODUCTION

Satellite resources, such as power and bandwidth, are lim-
ited and must be efficiently managed to cope with the increas-
ing demand. Thanks to reconfigurable digital payload tech-
nologies, it is now possible to control satellite resources in re-
sponse to user demands by adjusting the payload transponders’
frequency, bandwidth, and power. Hence, satellite resources
can be allocated unevenly according to user demand, where
a small amount is allocated to low-demand users and a large
portion to high-demand users [1]. However, the reconfigurable
payload must be aided by an efficient algorithm to achieve this
demand-based allocation. Several studies have been conducted
to develop demand-aware algorithms that can be classified into
three types according to their complexity and optimally:

1) Analytical optimization: The algorithm provides an opti-
mal or nearly optimal solution using this method. In this
context, the power allocation algorithm in [2] has been
developed to satisfy the requested demand. Similarly, in
[3], joint power and bandwidth optimization has been
considered to match the demand per user. However, the
proposed methods require a large number of optimiza-
tion parameters and are therefore very time-consuming.
Hence, the proposed resource allocation algorithms may
not suit real-time systems.

2) Meta-heuristic optimization: This method may not guar-
antee the optimality, but it is well-suited for problems
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involving non-linear, multi-objective, and NP-hard prob-
lems. In this context, power allocation in [4] has been
considered to match the demand per user. Furthermore,
in [5], joint bandwidth and power allocation has been
proposed for demand matching.

3) Machine learning: Algorithms in this category inter-
act with the environment or data to predict or decide
possible solutions. Like meta-heuristic methods, ma-
chine learning algorithms may not guarantee optimal
solutions. However, machine learning methods require
considerably less computation time than meta-heuristic
methods [6]. In this context, a power allocation in [7]
and bandwidth allocation in [8] based on reinforcement
learning has been investigated to meet the requested
demand. In [9], and [10], a multi-objective optimiza-
tion approach has been used with supervised learning
and reinforcement learning, respectively, to utilize the
satellite resources.

In this paper, we examine the synergy between analytical
optimization and DL to design a learning-assisted demand-
based resource allocation algorithm. Hence, we can analyt-
ically optimize the bandwidth allocation while dramatically
reducing the computational complexity via DL. Although DL
for scheduling in [11] has been already investigated, the
bandwidth allocation using DL has not been explored yet.
Additionally, DL with genetic algorithm is used in [12] to
allocate radio resources. However, in this paper, we make use
of DL to narrow down the huge search space of the radio
resource allocation problem, thus accelerating the convergence
of optimization-based solutions. The contributions of this
paper can be summarized as follows.

1) Firstly, we formulate a demand-aware bandwidth and
power optimization problem for a broadband Geostation-
ary(GEO) satellite system. For this, we design a utility
function to minimize the demand-offered data mismatch
and the overall bandwidth consumption.

2) Secondly, we design a deep neural network from the
solution of the proposed demand-aware bandwidth and
power optimization problem. For this, we map the prob-
lem’s solution into features vectors, from which DL can
learn and predict with high accuracy. Then, we combine
DL prediction and the formulated optimization problem
to obtain lower computational time while allocating the
bandwidth and power based on the user demand.
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3) Finally, we demonstrate the performance of DL-based
bandwidth and power allocation via simulation. It shows
that the proposed approach has lower computational time
while efficiently utilizing the resource of the satellite.

The remainder of the paper is organized as follows. Section
II presents the system model. Section III and Section IV
discuss the demand-aware bandwidth and power optimization
and the DL approach, respectively. The simulation results are
presented in Section V. Subsequently, Section VI concludes
the paper.

II. SYSTEM MODEL

We consider a downlink broadband GEO satellite with
N -beams to cover N sub-regions. The satellite is assumed
to have a flexible payload that can assign a bandwidth
chunk to a specific beam or group of beams from the to-
tal available bandwidth Btotal. Assuming a single user per
beam, the total number of possible beam group combina-
tions is given by M = 2N − 1 and the set of groups
denoted as G = {G1, G2, . . . , Gm, . . . , GM}, where Gm is
the mth group of beams. The channel vector for the ith
beam belonging to the mth group is defined as hm[i] =[
hi,m[1], hi,m[2], . . . , hi,m[|Gm|]

]T
, where |Gm| is the cardi-

nality of the mth group. Furthermore, the channel coefficient

hi,m[j] is given by hi,m[j] =

√
GRGi,m[j]

4π
di
λ

e−jφi,m , where φi,m
is the satellite antenna phase component, λ is the wavelength,
GR is the user antenna gain, Gi,m[j] denotes the received gain
from the jth beam by the ith user and di is the slant range
between the satellite and the ith user.

Since the GEO satellite is assumed to provide coverage
to a high-demand area, we assume that precoding is im-
plemented to boost the spectral efficiency and achieve high
data rates. Hence, the corresponding precoding weight vector
for the ith beam belonging to the mth group is denoted
as wm[i] =

[
wi,m[1], wi,m[2], . . . , wi,m[|Gm|]

]T
. We obtain

wm[i] from the widely-used precoding matrix Wm based on
Minimum Mean Square Error (MMSE) precoding technique
i.e. Wm = ηŴm with Ŵm = HH

m(HmHH
m + βI)−1, and

η =
√

Pm|Gm|
Trace{ŴmŴH

m}
. Where β is the regularization factor

given by β = N0Bm/Pm, N0 is the noise density in [W/Hz],
Bm is the bandwidth chunk assigned to the mth group and
Pm is the maximum transmit power allowed by any beam of
the mth group. The signal-to-interference-plus-noise ratio of
the ith user in the mth group is given by

γm[i] =
|hTm[i]wm[i]|2∑|Gm|

j=1,j 6=i |hTm[i]wm[j]|2 +N0Bm
. (1)

Hence, the Shannon capacity for the ith user in the mth
group is

Cm[i] = Bm log2(1 + γm[i]). (2)

Subsequently, the overall offered capacity by the system to the
ith user is provided as

C[i] =
∑

Gm∈G, i∈Gm

Cm[i]. (3)

Hence, for user demand D[i], the normalized unmet system
capacity is

Cunmet =

N∑
i=1

max(1− C[i]

D[i]
, 0). (4)

III. DEMAND-AWARE BANDWIDTH AND POWER
OPTIMIZATION

In order to maximize the demand satisfaction, the optimal
set of groups from the set G as well as the corresponding
bandwidth and power assignment need to be determined. We
formulate the following optimization problem with a utility
function to minimize: (1) the unmet capacity; and (2) the
overall bandwidth consumption.

minimize
Bm,Pm∀m

N∑
i=1

max(1− C[i]

D[i]
, 0) +

∑
Gm∈G

Bm
Btotal

s.t.
T1 :

∑
Gm∈G

Bm ≤ Btotal,

T2 : Bm ≥ 0,∀m,
T3 :

∑
Gm∈G

|Gm|Pm ≤ Ptotal,

T4 : Pm ≥ 0,∀m.

(5)

The constraint T1 limits the overall of bandwidth allocation
of the system from exceeding the total available system
bandwidth. Furthermore, T2 indicates that Bm should be non-
negative. The constraint T3 assures that the total transmit
power of the system should not exceed the total available
system power Ptotal. Additionally, T4 constraint indicates that
Pm should be non-negative.

The non-linearity of γm[i] makes (5) non-convex. Hence,
convexification is required. To convexify γm[i], we assume that
the power spectral density Spsd [W/Hz] is given and thus γm[i]
is expressed in terms of power spectral density. Therefore, with
Pm = SpsdBm, (1) is reformulated as

γm[i] =
|hTm[i]w̃m[i]|2∑|Gm|

j=1,j 6=i |hTm[i]w̃m[j]|2 +N0

, (6)

where w̃m[i] = wm[i]√
Bm

is the precoding vector in terms
of power spectral density. Moreover, T3 is re-written as∑
Gm∈G |Gm|SpsdBm ≤ Ptotal.

Unfortunately, the non-differentiability of the unmet system
capacity still hinders from solving the problem (5) directly.
Hence, to avoid the non-differentiability, we replace the max
function max(1− C[i]

D[i] , 0) by upper bound slack variable u[i],

∀i, where u[i] ≥ 0,∀i and u[i] ≥ 1 − C[i]
D[i] ,∀i. Finally, the

sub-optimal solution of (5) is reformulated as

minimize
Bm,∀m,u[i],∀i

N∑
i=1

u[i] +
∑
Gm∈G

Bm
Btotal

s.t.
T1, T2, T3

(7)
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T5 : 1− C[i]

D[i]
≤ u[i],∀i

T6 : u[i] ≥ 0,∀i.

Problem (7) is a linear program that can be solved opti-
mally by Simplex Algorithm (SA) [13]. However, the input
optimization parameter B = {B1, B2, . . . , Bm, . . . , BM} of
(7) increases exponentially (M = 2N − 1) as the number of
beams increases. Consequently, the complexity of solving (7)
increases. In the following section, we propose a DL based
acceleration for solving (7).

IV. DL ACCELERATION APPROACH

By analyzing the solution characteristics of (7), it is possible
to learn which are the groups with more probability to appear
in the solution. Accordingly, we reduce the size of G and
only consider a small number of optimization parameters Bm
corresponding to the selected groups. Hence, (7) requires less
time to solve as the search space is considerably reduced. In
this context, we apply a deep neural network to learn from the
optimal solution of (7) how to reduce the group size of G.

A. Single-Model DL (SMDL)

This DL approach uses a single model feedforward neural
network as shown in Fig. 1, which learns from the optimal
solution of (7) to reduce the size of G. The solution of (7)
should be mapped into feature vectors in order to train the
network. For this, we first categorize the optimal selected
groups of (7) based on their cardinality. For instance, for
N = 4, if optimal groups are {1, 2}, {1, 3}, {2, 3}, and
{1, 2, 3}, then, the first three groups are labeled as 2, while
the fourth group is labeled as 3. Therefore, we can define the
feature vector X = [x1, x2, . . . , xn, . . . , xN ] as indicating if
groups with the n-cardinality are selected (xn = 1) or not
selected (xn = 0). In the example above, the feature vector
is X = [0, 1, 1, 0], which indicates that an optimal solution
is found in the groups of beams with 2-cardinality and 3-
cardinality.

By solving (7) for L different demand realizations, we can
create L feature vectors. We obtain the demand realizations
for N = 20, N = 21, and N = 22 from the demand
distribution of Fig. 2. For this distribution, we assume low
demand is 5d Mbps, moderate demand is 150d Mbps, and
high demand is 430d Mbps, with d ∈ [1, 28] as the in-
teger value index. With the generated demand realizations
D ∈ RL×N and their corresponding feature vectors X ∈
RL×N , we can train the deep neural network to predict the
feature vector for the new demand realization. Then, based
on the predicted vector, we can select groups from G to
solve (7). As an example, for N = 21 and demand D =
[280, 20, 50, 290, 35, 130, 400, 360, 420, 530, 410, 35, 30, 120,
810, 770, 420, 160, 150, 140, 70] Mbps, the predicted fea-
ture vector is X = [1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0]. Accordingly, 21, 210, and 1330 groups with
cardinality of 1, 2, and 3, respectively, are selected. In this
case, we perform the optimization using only 1561 groups

rather than G with 2N − 1 = 2097151 groups. Consequently,
we solve (7) by SA to select the optimal groups in less time.

OutputInput

Fig. 1. Single-Model DL

0 10 20 30 40 50 60 70 80

Demand Index

0

100

200

300

400

500

600

700

800

900

1000

D
e
m

a
n
d
 [
M

b
p
s
]

Fig. 2. Demand distribution

B. Multiple-Model DL (MMDL)

The predicted feature vector obtained by a single-model DL
approach is used to reduce the size of the G, resulting in a
faster solution to (7). However, for some predicted feature
vectors, the computational time required to solve (7) may
not be significantly different from the time required to solve
the original problem. Consider, for example, the single-model
DL predicted vector X = [0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
0, 0, 0, 0, 0, 0, 0]. Accordingly, 5985, 20349, 54264, 116280,
203490, 293930, 352716, 352716, 293930, and 203490 with
cardinalites of 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14,
respectively, are obtained. Hence, a total of 1897150 groups
are selected compared to 2N − 1 = 2097151 size of G. In
this scenario, 90% of the groups in G are selected, and the
computational time required by (7) is not significantly less than
the original problem with the input size G. This problem can
be addressed by reducing the group size of each cardinality.
Hence, we propose a multiple-model DL approach, depicted
in Fig. 3, in which a primary neural network (single-model
DL) is used to predict the optimal cardinality of the groups,
whereas secondary neural networks are used to reduce the
number of groups for each cardinality. However, secondary
neural networks may not be required in some cases where the
cardinality group size is small. Hence, we model the secondary
neural network only for the group size of n-cardinality that
satisfies the minimum threshold group size value of Γ. For
this network, we prepare the future vector as follows:
• Firstly, we generate all possible groups for the n-

cardinality. For example, for N = 4, and n = 2, the pos-
sible groups are {1, 2},{2, 3},{2, 4},{1, 3},{3, 4},{1, 4}.
Note that, all elements within a group need to be arranged
in increasing order.

• Secondly, we put the groups in sub-sets according to their
first element. For instance, the groups {1, 2} , {1, 3},
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and {1, 4} are grouped together since the first element
is 1. Accordingly, the group category is given by l1 =
{{1, 2}, {1, 3}, {1, 4}}, l2 = {{2, 3}, {2, 4}} and l3 =
{{3, 4}}.

• Finally, we encode the category groups into a binary
valued vector Z = [z1, z2, . . . , zj , . . . , zN−n+1], where
zj = 1 indicates any group from lj is a possible solution
to (7). For example, if (7) selects the optimal groups
{1, 2}, {1, 3}, {1, 4}, then the feature vector for the 2-
cardinality is Z = [1, 0, 0].

Then, the neural network for the n-cardinality is trained
using the feature vector Z and the corresponding demand D
obtained using Fig. 2. Note that the second neural network is
only activated if the primary neural network output for xn is
xn = 1 and the n-cardinality group size is above the threshold
value Γ. From this property, the Multiple-Model DL approach
predicts each element of the feature vector from the primary
neural network if its output xn = 0 or if the n-cardinality
group size is below the threshold value Γ, otherwise, it is
obtained from the second neural network.

Input

Input

Input

Output 

Fig. 3. Multiple-Model DL

V. SIMULATION RESULTS

We consider N = 20, N = 21, and N = 22 beams to
evaluate the proposed DL approach. The beams are generated
by a Direct Radiating Antenna (DRA), with elements spaced
by 5λ apart and provided by the European Space Agency
(ESA). Additionally, we assume a single user is located at
the center of each beams. Furthermore, we consider a fully-
connected neural network1 for the proposed methods, and the
parameters required to model the network are summarized in
Table I. Additionally, the data sets required to train (80% of
the data) and test (20% of the data) the network are provided
in Table II. We compare the proposed methods SA+SMDL
and SA+MMDL with the optimal solver of SA.

Table III shows the average computational time of the
SA, the SA+SMDL, and the SA+MMDL. We observe that
the proposed SA+SMDL and SA+MMDL methods require
less computational time than the SA algorithm. For instance,
for N = 20, the computational time of SA+SMDL and
SA+MMDL is 24.7525 s and 10.8427 s, respectively, whereas
the time for SA is 34.1118 s. Similarly, for N = 21, the
SA+SMDL and the SA+MMDL need 44.2976 s and 21.3881
s, respectively, to solve (7). In contrast, SA requires 87.0577
s to solve (7). Furthermore, for N = 22, both the SA+SMDL

1Note that the predicted values are rounded to zero if they are less than
0.5, otherwise to one.

and the SA+MMDL reduce the computation of the original
problem by 25.67% and 65.96%, respectively. Therefore, the
proposed methods require less computational time than the
original problem.

TABLE I
SYSTEM PARAMETERS

Satellite Orbit 13◦E
Satellite Beam Pattern Provided by ESA
Number of beams (N) 20, 21, 22
System Bandwidth (Btot) 500 MHz
Noise power density (N0) -204 dBW/Hz
Max. beam gain (Gi[j]) 51.8 dBi
User antenna gain (GR) 39.8 dBi
Power spectral density (Sspd) -78.8 dBW/Hz
Total available transmit power (Ptotal) 132 W
Number of hidden layers 4
Nodes per hidden layer 200
Number of output nodes Primary (N ) and Secondary (N − n− 1)
Number of input nodes Primary (N ) and Secondary (N )
Activation function Relu
Optimizer Adam [14]
Loss function Root Mean Squared Error (RMSE)
Batch size 1024
Batch normalization per layer
Number of epochs 128
Minimum cardinality size (Γ) 15000
Mathematical optimization solver to (7) Simplex Algorithm (SA) using Mosek solver
Single-Model DL MATLAB Deep Learning Toolbox
Multiple-Model DL MATLAB Deep Learning Toolbox

TABLE II
THE SIZE OF THE DATA SET

DL N = 20 N = 21 N = 22
Primary 60000 60000 60000

Secondary n = 5 26045 22275 19560
Secondary n = 6 39270 35855 32475
Secondary n = 7 46035 44440 42470
Secondary n = 8 45820 46335 46195
Secondary n = 9 39400 41615 43790

Secondary n = 10 34240 36070 38410
Secondary n = 11 35530 37365 37000
Secondary n = 12 34500 37060 38340
Secondary n = 13 22300 27075 33140
Secondary n = 14 9330 14465 20785
Secondary n = 15 - 5810 9520
Secondary n = 16 - 1515 3265
Secondary n = 17 - - 985

TABLE III
COMPUTATIONAL TIME

Beams SA SA+SMDL SA+MMDL
20 34.1118 s 24.7525 s 10.8427 s
21 87.0577 s 44.2976 s 21.3881 s
22 165.949 s 123.3419 s 56.4812 s

Fig. 4 shows the cardinality prediction performance of
SA+SMDL and SA+MMDL compared with the optimal car-
dinality2 of the SA for N = 20, N = 21 and N = 22.
We observe that SA+SMDL and SA+MMDL have the same
prediction for cardinality below 5 and above 17. This same
prediction results from both methods use the same primary
neural network to predicate cardinality groups below 5 and
above 17. For the cardinality between 5 and 15, the SA+SMDL
shows a better prediction than the SA+MMDL. For example,
in Fig. 3a for N = 20 with cardinality 8, the SA+SMDL
and SA+MMDL predicates 97% and 78% of the SA optimal
cardinality, respectively. In addition, Fig. 3b for N = 21

2Note that, in Fig. 4, the number of Selected Cardinality Groups (SCG) is
determined by dividing the total number of n-cardinality selected from the test
data by the total size of the test data. Furthermore, the predication performance
of SA+SMDL and SA+MMDL in percent is given by SCG of SA+SMDL[%]

SCG of SA[%] ×100

and SCG of SA+MMDL[%]
SCG of SA[%] × 100, respectively.
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with cardinality 9, the SA+SMDL and SA+MMDL predi-
cates 96% and 77% of the optimal cardinality of the SA,
respectively. Similarly, Fig. 3c for N = 22, the SA+SMDL
predicates 93% of SA optimal solution of cardinality 10, while
SA+MMDL predicates 74% of it. The SA+MMDL prediction
is less accurate than SA+SMDL due to the second neural
network, which can still give an incorrect prediction even
though the primary is correct. Generally, SA+SMDL provides
more accurate predictions than SA+MMDL at the expense of
longer computation times.
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Fig. 4. Comparison cardinality group predication of SA+SMDL and
SA+MMDL with optimal cardinality group selection of SA: (a) N = 20;
(b) N = 21 ; (c) N = 22.

Table IV shows the average bandwidth usage3 of SA,
SA+SMDL and SA+MMDL. For N = 20, the bandwidth
usage of SA+SMDL and SA+MMDL is higher than SA
by 77.2 KHz and 189.7 kHz, respectively. Furthermore, for
N = 21, the SA+SMDL and SA+MMDL need 69.6 KHz
and 179.3 kHz in addition to SA bandwidth usage. Similarly,
for N = 22, the bandwidth usage of SA+SMDL exceeds SA
by 135kHz. In contrast, the bandwidth usage of SA+MMDL
exceeds SA by 275.8 kHz. We observe that the proposed
methods consume more bandwidth than SA due to cardinality
prediction errors. In this case, the optimization requires more
bandwidth to satisfy the demand per beam. However, the
proposed methods require substantially less computation time
than SA.

VI. CONCLUSIONS

We propose a demand-aware bandwidth and power alloca-
tion algorithm for GEO satellites based on a combination of
analytical optimization and DL. Thus, analytical optimization

3Note that power allocation is calculated based on bandwidth using the
formula Pm = SpsdBm. Hence, we can draw the same conclusion regarding
power consumption as we did about bandwidth usage.

TABLE IV
BANDWIDTH USAGE

Beams SA SA+SMDL SA+MMDL
20 361.2951 MHz 361.3723 MHz 361.4848 MHz
21 363.8607 MHz 363.9203 MHz 364.04 MHz
22 365.6942 MHz 365.8292 MHz 365.97 MHz

enables bandwidth and power allocation, while DL can speed
up computation. Future work will focus on developing an
efficient feature vector for the DL approach. This will reduce
the original problem computation time even further while
adequately utilizing the system’s bandwidth.

ACKNOWLEDGMENT

Some of the results have been obtained using the Luxem-
bourgish MeluXina supercomputer, in the context of the first
call for early access. For this, we thank MeluXina providers.

REFERENCES

[1] S. Kisseleff, E. Lagunas, T. S. Abdu, S. Chatzinotas, and B. Ottersten,
“Radio resource management techniques for multibeam satellite sys-
tems,” IEEE Communications Letters, vol. 25, no. 8, pp. 2448–2452,
Aug 2021.

[2] C. N. Efrem and A. D. Panagopoulos, “Dynamic Energy-Efficient Power
Allocation in Multibeam Satellite Systems,” IEEE Wireless Communi-
cations Letters, vol. 9, no. 2, pp. 228–231, 2020.

[3] T. S. Abdu, S. Kisseleff, E. Lagunas, and S. Chatzinotas, “Flexible
Resource Optimization for GEO Multibeam Satellite Communication
System,” IEEE Transactions on Wireless Communications, pp. 1–1,
2021.

[4] A. I. Aravanis, B. Shankar M. R., P. Arapoglou, G. Danoy, P. G. Cottis,
and B. Ottersten, “Power Allocation in Multibeam Satellite Systems:
A Two-Stage Multi-Objective Optimization,” IEEE Transactions on
Wireless Communications, vol. 14, no. 6, pp. 3171–3182, June 2015.

[5] G. Cocco, T. de Cola, M. Angelone, Z. Katona, and S. Erl, “Radio
Resource Management Optimization of Flexible Satellite Payloads for
DVB-S2 Systems,” IEEE Transactions on Broadcasting, vol. 64, no. 2,
pp. 266–280, Jun. 2018.

[6] J. J. G. Luis, N. Pachler, M. Guerster, I. del Portillo, E. Crawley, and
B. Cameron, “Artificial intelligence algorithms for power allocation in
high throughput satellites: A comparison,” in 2020 IEEE Aerospace
Conference, 2020, pp. 1–15.

[7] F. Li, K. Lam, X. Liu, J. Wang, K. Zhao, and L. Wang, “Joint pricing
and power allocation for multibeam satellite systems with dynamic game
model,” IEEE Transactions on Vehicular Technology, vol. 67, no. 3, pp.
2398–2408, 2018.

[8] X. Hu, X. Liao, Z. Liu, S. Liu, X. Ding, M. Helaoui, W. Wang, and F. M.
Ghannouchi, “Multi-agent deep reinforcement learning-based flexible
satellite payload for mobile terminals,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 9, pp. 9849–9865, 2020.

[9] F. G. Ortiz-Gomez, D. Tarchi, R. Martı́nez, A. Vanelli-Coralli, M. A.
Salas-Natera, and S. Landeros-Ayala, “Convolutional neural networks
for flexible payload management in vhts systems,” IEEE Systems Jour-
nal, pp. 1–12, 2020.

[10] P. V. R. Ferreira, R. Paffenroth, A. M. Wyglinski, T. M. Hackett,
S. G. Bilén, R. C. Reinhart, and D. J. Mortensen, “Multiobjective
reinforcement learning for cognitive satellite communications using
deep neural network ensembles,” IEEE Journal on Selected Areas in
Communications, vol. 36, no. 5, pp. 1030–1041, 2018.

[11] L. Lei, L. You, Q. He, T. X. Vu, S. Chatzinotas, D. Yuan, and B. Otter-
sten, “Learning-Assisted Optimization for Energy-Efficient Scheduling
in Deadline-Aware NOMA Systems,” IEEE Transactions on Green
Communications and Networking, vol. 3, no. 3, pp. 615–627, 2019.

[12] M. Vázquez, P. Henarejos, I. Pappalardo, E. Grechi, J. Fort, J. C. Gil,
and R. M. Lancellotti, “Machine learning for satellite communications
operations,” IEEE Communications Magazine, vol. 59, no. 2, pp. 22–27,
2021.

[13] K. Murty, Linear programming. NJ, USA: Wiley, 1983.
[14] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,

2016, http://www.deeplearningbook.org.

1096


