
BACS: A comprehensive tool for deep
learning-based anomaly detection in edge-fog-cloud

systems
N. Milosevic, D. Jakovetic, S. Skrbic, M. Savic, D. Stamenkovic

Dept. of Mathematics and Informatics
Univ. of Novi Sad, Fac. of Sciences

Novi Sad, Serbia
{nmilosev, dusan.jakovetic, srdjan.skrbic,
svc, dusan.stamenkovic}@dmi.uns.ac.rs

J. Mascolo, D. Masera
Centro Ricerche Fiat

Torino, Italy
julien.mascolo@crf.it, davide.masera@fcagroup.com

Abstract—The Internet of Things (IoT) technology has shown
to offer promising benefits in various domains, including smart
cities, smart factories, and smart manufacturing. However, the
large number of heterogeneous devices deployed in such IoT
systems increases the attack surface and hence poses additional
security challenges. In this context, many of the relevant threat
detection tasks can be formulated as deep learning (DL)-based
detection of anomalies in the data acquired by the IoT system.
There is hence a significant need for comprehensive anomaly
detection (AD) tools in IoT applications. Indeed, as typical
applications usually lack labeled data, multiple models need to
be tried and compared one against another in order to get solid
results. Moreover, the AD offerings should be adapted to the
computational and storage capabilities of the underlying infras-
tructure for the given application. In this paper, we present BACS
(Behavioral Analysis and Cognitive Security), a comprehensive
DL-based tool for anomaly detection in IoT systems designed to
be adaptable to edge-to-fog-to-cloud (E2F2C) environments. We
provide an open source implementation of BACS, describe the
internal architecture, explain how it is used by the developers,
and illustrate its performance on real-world data provided by
the Centro Ricerche Fiat (CRF) in the context of smart factory
and smart logistics applications.

Index Terms—Deep learning-based anomaly detection, edge-
to-fog-to-cloud system, performance evaluation.

I. INTRODUCTION

Deep learning (DL) approaches are becoming increasingly
popular for improving device monitoring and security features
of various Internet of Things (IoT) systems [19]. Large scale
IoT data is collected and analyzed by DL methods that produce
insights about the health status of the IoT infrastructure,
emerging threats, etc. Among different DL methods, outlier
(anomaly) detection is of significant interest [14]. Finding
anomalies in the IoT-generated data may correspond to, e.g.,
detecting faults in device operation or communication errors in
a complex heterogeneous IoT environment like smart city [3],
but also to detecting different types of security threats (e.g.,

The work is supported by the European Union’s Horizon 2020 Research and
Innovation program under Grant Agreement No 833828. The paper reflects
only the view of the authors and the Commission is not responsible for any
use that may be made of the information it contains.

device tampering, IoT pivot, botnet, distributed denial of
service, etc.) [7]. The DL-based models utilized include, e.g.,
recurrent neural networks [17], autoencoders [8], [14], etc.

In IoT applications, many systems follow an edge-to-fog-
to-cloud architecture (E2F2C) design, e.g., [12]. Therein, the
data generated by IoT devices gets transferred to fog servers
(e.g., mobile operator gateways) and is subsequently further
communicated to the cloud. In order to shorten response times,
data analytics (e.g., anomaly detection) in E2F2C systems
takes place not only at the cloud, but also at the edge or fog. As
edge devices usually have limited computational and storage
capabilities, only low-to-moderate complexity models (with
a potentially limited accuracy performance) can be deployed
therein.

There is a significant need for comprehensive anomaly
detection (AD) tools targeted for IoT applications. Indeed, as
usual applications exhibit lack of labels in the data, typically
many different AD methods should be tried and compared
one against another in order to obtain results with confidence.
An additional reason for trying multiple AD models is that
different models can perform differently relative to each other
for different applications or data sets, i.e., a single method
is usually not universally better than others. Comprehensive
AD tools with built-in methods hence facilitate and shorten
experimentation times for developers. There exist several tools
and libraries for anomaly detection either as stand-alone or
sub-modules of widely used tools, such as PyOD [18], scikit-
learn [13], Tensorflow [1], Anomalib [2], etc. For example,
PyOD represents a comprehensive and ready-to-use tool for
supervised, semi-supervised, and unsupervised anomaly de-
tection methods, including both neural network-based models
and classical AD models.

Contributions. In this paper, we present the BACS (Be-
havioral Analysis and Cognitive Security) tool for anomaly
detection in E2F2C environments that has been developed in
the context of the Horizon 2020 project C4IIoT [4]. BACS
is available as open source [11]. BACS is designed to adapt
to E2F2C environments, i.e., it offers different packages that

1097ISBN: 978-1-6654-6798-8 EUSIPCO 2022



are optimized for edge, for, and cloud operation. BACS offers
a comprehensive pool of both supervised and unsupervised
anomaly detection methods (See Section III). We present the
BACS’ internal architecture, describe the available anomaly
detection methods, and demonstrate how BACS is used by
developers. Finally, we present comprehensive results on the
BACS anomaly detection performance on several real-world
IoT applications, namely the smart logistics and smart man-
ufacturing applications through the real data provided by the
Centro Ricerche Fiat (CRF). While there currently exist several
widely used software tools that offer anomaly detection capa-
bilities, such as PyOD, Tensorflow, Scikit-learn, etc., BACS
builds upon their implementations to offer a very wide and
complementary pool of methods with respect to what each
of these individual frameworks provide. In addition, BACS
contributes towards providing a unifying AD tool adapted to
E2F2C systems. Unlike the works [8], [14], [17] that consider
a specific class of DL models and a targeted IoT application,
we offer a comprehensive tool that allows to implement a more
general class of DL models and target a broader class of IoT
anomaly detection applications.

Paper organization. Section II provides preliminaries on
a prototypical E2F2C architecture on top of which BACS
can be deployed. Section III describes the BACS architecture
and the AD models that it offers and explains how BACS is
used to implement various AD models. Section IV presents
comprehensive results on the performance of BACS on real
industrial IoT applications. Finally, Section V concludes the
paper. Some additional numerical results and considerations
can be found in an extended version of this paper [10].

II. BACKGROUND AND PRELIMINARIES

We describe a prototypical E2F2C architecture to which
the BACS system can be deployed (Figure 1). The E2F2C
architecture is a widely adopted architectural pattern for IoT,
e.g., [12]. The architecture consists of three layers. The first
(bottom) layer consists of various edge devices that acquire
measurements about the environment (e.g., various sensors
and smart meters in a smart home application). The type
of IoT devices can vary (e.g., microcontollers, single board
computers, cameras, etc.), but typical applications assume
presence of devices with low-to-moderate computational and
storage capabilities. The data acquired by the IoT devices
is sent via appropriate communication channels to the fog
layer. The type of communication may vary depending on
the application. For example, in smart home applications,
the devices can communicate via narrow-band IoT (NB-IoT)
protocol, [9]. The fog layer contains various servers (e.g.,
mobile operator gateways) that posses intermediate storage
and processing capabilities. Finally, the data at the fog layer
can be further transferred (e.g., through the core network)
to the cloud. The cloud layer assumes highest computational
and storage capabilities relative to the edge and fog layers.
However, processing at the cloud incurs an increased delay
that corresponds to the time required for the data acquired
by an IoT edge device to first reach fog and subsequently to

arrive to the cloud. The corresponding edge-to-fog and fog-
to-cloud delay times are application specific. For illustration
purposes, if platform has encryption capabilities which require
message encryption and decryption at certain points in the
system architecture the delay time can increase by couple of
seconds at the minimum, even with high network throughput.

STORAGE FOG AD

FOG SERVER

STORAGE
CLOUD AD

CLOUD SERVER

MICROCONTROLLER
LOW PROCESSING POWER

LOW MEMORY SINGLE BOARD COMPUTER
MORE PROCESSING POWER

MORE MEMORY

STORAGE FOG AD

IoT device EDGE AD

IoT device EDGE AD

PYTHON
TENSORFLOW 2

BACSCL

SUPERVISED
AD

UNSUPERVISED
AD BACSPY

CLASSIFICATION

REPRESENTATION 
LEARNING

PYTHON
TENSORFLOW 2

∂

BACSC

ANOMALY 
DETECTION

OUTLIER DETECTION

PYTHON
SCIKIT-LEARN

TENSORFLOW 2
PYOD

C

Fig. 1. A prototypical E2F2C system; BACS’ mapping to E2F2C.

As described ahead in Section III, BACS allows that each of
the three layers to perform anomaly detection. While BACS
is equipped with a number of different DL-based anomaly
detection models, for a simplified presentation we focus here
on autoencoders-based anomaly detection, to set up for future
reference relevant metrics and quantities for system operation.
Autoencoder is a feed-forward neural network that learns
latent low-dimensional data representations, e.g., [14]. An
autoencoders operates in two phases: training and inference.
Anomaly detection based on autoencoders works as follows,
e.g., [14]. First, in the training phase, the autoencoder takes
as inputs normal (non-anomalous) data points and learns a
latent low-dimensional representation based on the training
data. Denote by A the trained autoencoder model that takes as
input a data point X and produces as its output its autoencoder
reconstruction Y = A(X). In the inference phase, a new
data point X ′ is declared as anomaly if the reconstruction
error Err(X ′) (for example, one can take Err(X ′) = ∥X ′ −
A(X ′)∥22) is above a threshold τ > 0. One can take τ as the
maximal or high-percentage quantile (e.g., 95% quantile) over
the reconstruction errors across the training data points.

We assume that training for anomaly detection in the E2F2C
system is done offline, e.g., at the cloud. However, inference
can be done either at the edge, fog, or cloud. This means
that different instances of trained autoencoders are deployed
at the edge, fog, and cloud. We refer to those as Aedge, Afog,
and Acloud. Each of the three autoencoders takes as inputs
either a single data point generated at the edge (e.g., a single
sensor reading by an IoT device), or multiple data points across
multiple devices and/or multiple time instances (timeseries
data).

1098



Due to limited computational and storage resources at the
edge (or fog), the autoencoders Aedge and Afog are of a
lower “complexity” when compared to Acloud. The complexity
of a model here refers to the size of input the model can
accommodate, and the size of storage needed to deploy the
trained model (that corresponds, e.g., to the number of layers
in the autoencoders neural network). For example, as edge
devices have a limited storage, they cannot accommodate
autoencoders with large inputs sizes or large number of layers.
Clearly, the “size” of models that edge, fog, or cloud layers can
host increases as we traverse from edge to cloud. For example,
edge devices can usually only accomodate single hidden layer
models while fog and cloud models often go much deeper (and
wider). Some Cloud BACS neural network models exceed one
million parameters, spanning over dozen of large (wide) layers.

With Aedge, Afog and Acloud, we are interested in their
anomaly detection performance. While various metrics are
possible, we will be mainly interested in precision P , recall
R, and F1 score, defined respectively by: P = TP

TP+FP ;
R = TP

TP+FN ; F1 = 2·P ·R
P+R . Here, TP, FP , and FN are

the number of true positive, false positive, and false negative
outcomes, respectively. That is, TP is the total number of
testing data points for which the autoencoder declared the data
point as an anomaly, while the data point is indeed an anomaly.
(FP and FN are defined analogously.) In order to evaluate
the metrics P , R, and F1, we need to have the “ground truth”
available, i.e., we need to know for a given data point whether
it is an anomaly or not. This scenario corresponds to the
experimental setting we report on in this paper (Section IV).
When ground truth is not available, several methods to evaluate
anomaly detection are possible, e.g., [6].

Another metric of interest for us is the response time, that
we define here as the time required by a trained autoencoder
to receive the data input and to process it and produce the
decision (anomaly or not). With Aedge, the response time is
just the time of inference of the model; with Afog, the response
time is the inference time of the autoencoder plus the time it
takes the input to arrive from edge to fog; finally, with Acloud,
the response time is the inference time of the autoencoder plus
the time it takes the data input to arrive from edge to cloud.

III. BACS TOOL DESCRIPTION

A. BACS internal architecture and AD models available

BACS internal structure contains the following modules
adapted to the E2F2C prototypical architecture (See Figure 1
how BACS modules are mapped to E2F2C).

BACSCL (BACS Cloud Layer) performs anomaly detection
based on deep autoencoder forests (unsupervised AD) and
deep neural network forests (supervised AD) implemented in
Python using the Tensorflow 2 library. The Cloud module
also offers support for recurrent neural network models (e.g.
LSTM’s) and regression threshold-based fully-connected neu-
ral networks. Diferentially private methods (modifications of
K-Means and PCA) are also available. BACSCL modules can
run in a distributed cloud environment and support both data
partitioning (training datasets are stored within a distributed

file system) and model partitioning (deep autoencoders/neural
networks within a forest run on different computational nodes
within the cloud).

BACSPY provides anomaly detection based on outlier de-
tection, classification and representation learning algorithms
implemented in Python using Tensorflow 2, scikit-learn and
PyOD libraries. BACSPY modules also realize AD functional-
ities running at the cloud, field gateway and edge devices with
higher computational power (e.g., Raspberry PI). BACSPY
supports both standalone and federated AD models.

BACSC contains lightweight anomaly detection routines
implemented in C for constrained microcontroller devices.

We focus here on a collection of anomaly detection models
available in BACSPY; for further details on the remaining
BACS modules, we refer to deliverable D3.1 of [4]. We
introduce naming conventions which allow us to simplify
the presentation. Model names starting with “TF” denote
TensorFlow2 Deep-Learning models; the names ending with
SKLAD denote scikit-learn models; those ending with PY-
ODAD denote PyOD models; and the names ending with
DPLAD denote the diffprivlib library-based implementations.

Edge and Fog (FG) models have designation in their names
(Edge and FG respectfully), while for the cloud models the
layer designation is omitted. The available (cloud) models are
the following:
1. TensorFlow Autoencoder models: TFAutoAD – Ten-
sorFlow Autoencoder; TFAutoDeepAD – TensorFlow Au-
toencoder variation with more layers (deeper); TFAutoDeep-
VAEAD – TensorFlow Autoencoder variation with more units
in layers (wider); TFAutoVAEAD – TensorFlow Variational
Autoencoder; TFAutoWideVAEAD – TensorFlow Variational
Autoencoder with more units in layers;
2. Scikit-learn models: EE SKLAD – Elliptic Enve-
lope Model; LOF SKLAD – Local Outlier Factor Model;
IF SKLAD – Isolation Forest Model; SVM SKLAD – Sup-
port Vector Machine Model (One Class).
3. PyOD models: ABOD PyODAD – Angle-based Outlier
Detector; KNN PyODAD – K-nearest Neighbours;
PCA PyODAD – Principal Component Analysis;
HBO PyODAD – Histogram-based Outlier Detection;
AE PyODAD – Autoencoder Model (PyOD specific).
4. TensorFlow Fully Connected models: TFAutoFCNAD –
Fully connected (Dense) Neural Network; TFAutoDeepFC-
NAD – Fully connected (Dense) Neural Network Model with
more hidden layers (deeper).
5. TensorFlow Recurrent models: TFAutoLSTMAD – Long-
Short Term Memory Recurrent Neural Network; TFAuto-
GRUAD – Gated Recurrent Unit Recurrent Neural Network;
TFAutoRNNAD – Recurrent Neural Network.
6. Facebook Prophet Model (TFAutoProphetAD).
7. Diferentially private models (diffprivlib-based):
Kmeans DPLAD – Differentially private K-Means;
PCA DPLAD – Differetially private Principal Component
Analysis.
8. Ensemble Models: AutoEnsembleAD – Combination or a
subset of all the other models with weighted (model size and

1099



complexity based) voting system.

B. BACS tool usage considerations

We next show the ease-of-use aspect of the BACS tool
by explaining how one can use it to obtain trained anomaly
detection models for a custom dataset.

When using BACS, the first step is to obtain and ingest
data. BACS works with tabular data which needs to follow
certain rules in order for BACS to automatically ingest it. The
data is provided to BACS in the CSV format, where the first
column is expected to be the timestamp as BACS is used for
time-series analysis. Other columns will be used as feature
columns.

The next step is choosing which models are to be trained by
using the included BACS model training script. By default all
available models are trained for the entire infrastructure (edge,
fog, cloud) but a subset can be selected.

The differences in model types for the different layers
(edge, fog, cloud) are in model size and more importantly
window lengths on which they operate (i.e., sizes of input at
inference–see Section II). Cloud models generally operate on
longer window lengths while fog and edge models operate on
shorted window lengths because of memory and processing
constraints. Data is automatically processed (with a sliding
window approach) by BACS data loading modules.

Depending on the model type, the data is adapted to the
model automatically. For example, some models (e.g., some
neural network models) require data normalization which is
performed automatically within BACS. Also, some models
expect different formats at the input and at the output, while
autoencoders use the same inputs and output vectors, and
regression networks split the selected data point windows.
BACS handles this model heterogeneity automatically.

After models are trained, training metrics can be obtained.
Final loss values and average inference times are provided for
all models. If labels (ground truth) are present, BACS can also
provide validation metrics such as accuracy, precision, recall
and F1-scores.

BACS also offers the ability to synthetically generate
anomalous data by in-place modification of normal training
data (which usually does not contain anomalies). There are
several strategies for generating anomalous data such as ran-
domization of feature values, random increases and decreases,
zeroing out of the data, etc. This feature is especially useful if
only normal non-anomalous data is available and an anomaly
detection model is still necessary in early stages of system
implementation. The synthetic anomaly generator can also be
used in conjunction with supervised models to perform self-
supervised learning without anomalous data.

Regarding model tuning, all BACS models offer a threshold
quantile hyperparameter which defines how anomalies are de-
tected. This parameter defines which quantile of the observed
training loss values (errors) is to be used for the threshold
above which anomalies are detected. BACS provides sensible
default values for all the hyperparameters which can be used
as a baseline for tuning more performant models. Further

usage considerations, e.g., on connecting with message queue
systems, can be found in the Appendix of [10].

IV. NUMERICAL RESULTS

We present here numerical results on a comprehensive set
of experiments for a real data set provided by CRF in the
context of a smart factory application. See also the Appendix
in [10] for additional numerical results, including those on a
logistics application scenario.

The data comes from automated guided vehicles (AGVs) on
the factory floor. The vehicles are equipped with IoT devices
which log various sensory data used for anomaly detection.
The dataset contains the following features: 1) timestamp
– exact moment of the data log; 2) motor id – source of
the data point (vehicle id); 3) acceleration – value from the
acceleration sensor (absolute); and 4) velocity – values from
the speed sensor (absolute). In this context, anomalous sensory
readings (e.g., acceleration) may correspond to errors in the
robot trajectory and are thus highly relevant to detect.

We apply various unsupervized BACS models on the data.
Table I presents the number of detected anomalies, inference
times, and average inference times for various methods. The
results also include those for the experimental Facebook
Prophet time-series forecasting model adapted for anomaly
detection usage.

We performed additional analysis with synthetic anomaly
generation. For training, only normal (non-anomalous) real
data is used. On the other hand, for testing, we generated
synthetic anomalies that accurately emulate realistic anomalies
for the considered scenarios. This also allows us to evaluate
accuracy of the methods, e.g., to measure the F1 score.

We generate anomalies in two scenarios, i.e., two types
of anomalies are created, referred to here as singular and
continuous anomalies. Singular anomalies are those where
sensor data becomes corrupted at any single point in time.
Continuous anomalies are the anomalies that span multiple
consecutive data points in time; such anomalies are more likely
to occur in streaming, real-time usage. In Table II we present
the resulting metrics for the singular anomalies all the BACS
models compatible with the considered application scenario.
See the Appendix in [10] for the results on continuous
anomalies. We can see that almost all BACS models achieve
good F1-scores and accuracies. Also, the results illustrate the
usefulness of including multiple models in a single tool, as the
same AD method may operate with a different performance
over different data or different anomaly types. For example,
from Table II here and Table III in [10] SVM SKLAD (FG)
operates much better on singular than on continues anomalies,
relative to other methods available.

V. CONCLUSION

In this paper, we presented BACS, a comprehensive tool
for anomaly detection in E2F2C IoT systems. BACS offers to
data analysts and developers implementations of a number of
different unsupervized and supervized deep learning methods.
The different offerings (modules) of BACS are adapted to
the deployment requirements and constraints of the underlying

1100



Model Anomalies Inf. Time Avg. Inf. Time
TFAutoAD (Edge) 323 50.57 0.0156
SVM SKLAD (Edge) 324 0.44 0.0001
TFAutoAD (FG) 323 50.48 0.0156
SVM SKLAD (FG) 321 0.49 0.0002
TFAutoAD 323 50.46 0.0156
TFAutoDeepAD 323 50.53 0.0157
TFAutoDeepVAEAD 323 49.46 0.0153
TFAutoVAEAD 322 49.26 0.0153
TFAutoWideVAEAD 327 49.43 0.0153
EE SKLAD 323 0.89 0.0003
LOF SKLAD 411 2.42 0.0008
IF SKLAD 484 150.24 0.0466
SVM SKLAD 321 0.51 0.0002
ABOD PyODAD 470 2.24 0.0007
KNN PyODAD 281 0.73 0.0002
PCA PyODAD 323 0.67 0.0002
HBO PyODAD 466 0.38 0.0001
AE PyODAD 323 84.56 0.0262
TFAutoFCNAD 291 49.37 0.0153
TFAutoDeepFCNAD 355 50.01 0.0155
TFAutoLSTMAD 484 50.54 0.0157
TFAutoGRUAD 484 50.56 0.0157
TFAutoRNNAD 645 50.43 0.0156
TFAutoProphetAD 3040 8578.22 2.6525
Kmeans DPLAD 1991 1.04 0.0003
PCA DPLAD 3173 0.70 0.0002

TABLE I
THE COLUMN ANOMALIES REPRESENTS THE NUMBER OF DETECTED
ANOMALIES ON THE TRAINING DATASET (MODEL SENSITIVITY). INF.
TIME SHOWS THE TOTAL MODEL INFERENCE TIME FOR ALL DATASET
DERIVED TIME SERIES WINDOWS. AVG. INF. TIME REPRESENTS THE
AVERAGE MODEL INFERENCE TIME WHICH IS THE EXPECTED MODEL

RESPONSE TIME IN REAL-WORLD USAGE. TIMES ARE IN SECONDS.
MODELS OPERATE IN THE CLOUD LAYER (SEE FIGURE 1), UNLESS

OTHERWISE SPECIFIED IN THE MODEL NAME.

Model Accuracy Precision Recall F1
TFAutoAD (Edge) 0.90 0.50 0.94 0.65
SVM SKLAD (Edge) 0.89 0.45 0.78 0.57
TFAutoAD (FG) 0.93 0.86 0.99 0.92
SVM SKLAD (FG) 0.89 0.84 0.89 0.86
TFAutoAD 0.92 0.94 0.93 0.94
TFAutoDeepAD 0.49 0.79 0.28 0.42
TFAutoDeepVAEAD 0.52 0.84 0.31 0.45
TFAutoVAEAD 0.51 0.84 0.31 0.45
TFAutoWideVAEAD 0.52 0.83 0.31 0.45
EE SKLAD 0.65 0.89 0.51 0.65
LOF SKLAD 0.91 0.93 0.94 0.93
IF SKLAD 0.52 0.80 0.35 0.49
SVM SKLAD 0.74 0.91 0.66 0.76
ABOD PyODAD 0.91 0.92 0.94 0.93
KNN PyODAD 0.85 0.93 0.82 0.87
PCA PyODAD 0.48 0.78 0.28 0.41
HBO PyODAD 0.63 0.85 0.52 0.65
AE PyODAD 0.48 0.78 0.26 0.39
TFAutoFCNAD 0.87 0.94 0.85 0.90
TFAutoDeepFCNAD 0.87 0.93 0.86 0.89
TFAutoLSTMAD 0.72 0.89 0.64 0.74
TFAutoGRUAD 0.62 0.85 0.50 0.63
TFAutoRNNAD 0.86 0.89 0.90 0.89
TFAutoProphetAD 0.15 0.10 0.95 0.18
Kmeans DPLAD 0.50 0.63 0.56 0.59
PCA DPLAD 0.62 0.64 0.94 0.76

TABLE II
RESULTS WHEN TESTING WITH SYNTHETIC SINGULAR ANOMALIES

(SELF-SUPERVISED RESULTS). MODELS OPERATE IN THE CLOUD LAYER,
UNLESS OTHERWISE SPECIFIED IN THE MODEL NAME.

E2F2C system, offering for example to the edge layer tools
that produce lighter trained models. We describe the BACS
internal architecture, demonstrate its usage, and present com-
prehensive experimental results that report BACS performance
of real data provided by Centro Ricerche Fiat (CRF). Future
work will focus on further evaluation of latency-accuracy
tradeoffs that, in addition to model latency, also account for
the latency caused by the data transmission.

REFERENCES

[1] M. Abadi et al., “TensorFlow: A system for large-scale machine learning.”
12th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 16), USENIX Association, pp. 265–283, 2016.

[2] Anomalib: A library for benchmarking, developing and
deploying deep learning anomaly detection algorithms,
https://github.com/openvinotoolkit/anomalib

[3] P. Bellini, D. Cenni, P. Nesi, M. Soderi, “Anomaly Detection on IOT
Data for Smart City,” IEEE Int. Conf. Smart Computing (SMARTCOMP),
Bologna, Italy, Sept. 2020.

[4] C4IIoT: Cyber security 4.0: protecting the Industrial Internet Of Things,
https://www.c4iiot.eu/

[5] L. Da Xu, W. He, S. Li, “Internet of things in industries: A survey,” IEEE
Trans. Ind. Inform., Vol. 10, No. 4, pp. 2233–2243, 2014.

[6] N. Goix, “How to Evaluate the Quality of Unsupervised Anomaly De-
tection Algorithms?,” 2016, available at: https://arxiv.org/abs/1607.01152

[7] F. Hussain, R. Hussain, S. A. Hassan and E. Hossain, “Machine Learning
in IoT Security: Current Solutions and Future Challenges,” IEEE Comm.
Surveys & Tutorials, Vol. 22, No. 3, pp. 1686–1721, 2020.

[8] Y. Koizumi, S. Murata, N. Harada, S. Saito, and H. Uematsu, “SNIPER:
Few-shot learning for anomaly detection to minimize false-negative rate
with ensured true-positive rate,” in Proc. IEEE International Conference
on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK,
pp. 915–919, 2019.

[9] B. Martinez, F. Adelantado, A. Bartoli and X. Vilajosana, “Exploring the
Performance Boundaries of NB-IoT,” in IEEE Internet of Things Journal,
vol. 6, No. 3, pp. 5702–5712, 2019.

[10] N. Milosevic, D. Jakovetic, S. Skrbic, M. Savic, D. Stamenkovic,
J. Mascolo, D. Masera, “BACS: A comprehensive tool for
deep learning anomaly detection in edge-fog-cloud systems,”
https://github.com/dusanjakovetic/BACS/blob/main/BACS2.pdf, 2022.

[11] N. Milosevic, M. Savic, D. Jakovetic, S. Skrbic, D. Stamenkovic, Be-
havioural Analysis and Cognitive Security Framework, open source code,
available at Zenodo, https://zenodo.org/record/6557696.YqbiPahBxPY

[12] N. Mohan and J. Kangasharju, “Edge-Fog cloud: A distributed cloud for
Internet of Things computations,” Cloudification of the Internet of Things
(CIoT), Paris, France, Nov. 2016., DOI: 10.1109/CIOT.2016.7872914

[13] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal
of Machine Learning Research, vol. 122, no. 1, pp. 2825—2830, 2011.

[14] M. Savic et al., “Deep Learning Anomaly Detection for Cellular IoT
with Applications in Smart Logistics,” IEEE Access, vol. 9, pp. 59406–
59419, Apr. 2021.

[15] I. Stellios, P. Kotzanikolaou, M. Psarakis, C. Alcaraz and J. Lopez, “A
Survey of IoT-Enabled Cyberattacks: Assessing Attack Paths to Critical
Infrastructures and Services,” IEEE Communications Surveys & Tutorials,
Vol. 20, No. 4, pp. 3453–3495, 2018.

[16] S. J. Taylor, B. Letham. “Forecasting at scale,” The American Statistician
72.1, pp. 37-45, 2018.

[17] Z. Tian, C. Luo, J. Qiu, X. Du, and M. Guizani, “A distributed deep
learning system for web attack detection on edge devices,” IEEE Trans.
Ind. Inform., Vol. 16, No. 3, pp. 1963–1971, 2019.

[18] Y. Zhao, Z. Nasrullah, and Z. Li, “PyOD: A Python Toolbox for Scalable
Outlier Detection.” Journal of Machine Learning Research, vol. 20, no.
96, pp. 1–7, 2019.

[19] M. Zolanvari, M. A. Teixeira, L. Gupta, K. M. Khan and R. Jain,
“Machine Learning-Based Network Vulnerability Analysis of Industrial
Internet of Things,” IEEE Internet of Things Journal, Vol. 6, No. 4, pp.
6822–6834, 2019.

1101


