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Abstract—Distributed training of machine learning models
directly on satellites in low Earth orbit (LEO) is considered.
Based on a federated learning (FL) algorithm specifically targeted
at the unique challenges of the satellite scenario, we design
a scheduler that exploits the predictability of visiting times
between ground stations (GS) and satellites to reduce model
staleness. Numerical experiments show that this can improve the
convergence speed by a factor three.

Index Terms—LEO constellation, Federated learning, Schedul-
ing.

I. INTRODUCTION

The small low Earth orbit (LEO) satellites, efficient in terms
of cost and deployment, are marking a new era in satellite
communications, as well as their integration with terrestrial
networks. These LEO satellites are commonly deployed in
large constellations, thereby creating a moving infrastructure
for a seamless global coverage for, various applications such
as communication services and Earth observation [1]. Many
of these applications are data-intensive. For instance, in Earth
observation, the high spatial, spectral, and temporal resolution
of the imaging equipment, lead to large amounts of collected
data [2]. These data are used in a variety of applications, such
as disaster prevention, environmental monitoring, and urban
planning. Transmitting such a large amount of data to the Earth
may not be practical due to scarcity of the radio frequency
resources or stringent delay requirements [3].

To address these constraints, a plausible solution is to
process the data directly on-board of the satellites and only
transmit the abstracted information to the ground station (GS).
In this regard, it is viable to use federated learning (FL) [4],
as a cooperative machine learning (ML) scheme in which the
satellites only need to transmit the model parameters to the
server instead of the raw data. Fig. 1 depicts the usage of
FL for Earth observation. In the original FL setup, the user’s
participation in the training process is intermittent and random-
ized, based on user activity and communication availability. In
satellite scenarios, the link (un)availability is predictable and
related to the visiting pattern of the satellites to the location at
which the GS is positioned. This GS orchestrated FL scenario
was first identified in [5], where a new asynchronous FL
procedure is proposed that addresses the unique challenges
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Fig. 1. FL for Earth observation applications.

of FL on satellites. In [6], it is shown that the presence of
inter-satellite links (ISL) improves the convergence speed of
FL on satellites considerably. Without this capability, several
extensions of the approach in [5] are possible that might lead to
faster convergence speed. Indeed, the authors of [7] consider a
heuristic GS update procedure and gradient buffering to speed
up convergence.

In this paper, we take a different approach and design a
scheduler based on the predictability of GS-satellite visiting
lengths to reduce the model staleness. This leads to signifi-
cantly faster convergence speed than the baseline approach in
[5] and can be combined with different aggregation rules, such
as the one in [7].

II. SYSTEM MODEL

We consider a LEO satellite constellation with P circular
orbits where the p-th orbit contains K, satellites. The set X =
{51,852,...,SK} denotes all K = 25:1 K, satellites. The
altitude and inclination of orbit p are denoted by h, and i,,

27 (rg+hp)
Vp

respectively. Let T, = and v, = m/s,

h +7"E
respectively, denote the orbital period and the speed of the
satellites in orbit p where rg = 6371 km is the Earth radius
and pu = 3.98 x 10'¥m?/s? is the geocentric gravitational
constant. A satellite can communicate with the GS if it is in a
visiting state, i.e., the line-of-sight link between it and the GS
is not blocked by the Earth. Otherwise, it is in a non-visiting
state. The line-of-sight link between the satellite k£ and the
GS is available when § — Z(7gs,™s — Tas) > ce, Where
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7, and Tgg denote the positions of satellite & and the GS,
respectively, and «, is the minimum elevation angle.

We define two time instants of significance. The rise time of
the k-th satellite ¢!, is the time instant at which the satellite
enters in its n-th 7ViSit, while the set-time {7, is the time
instant at which the satellite finishes its n-th visit. The rise-
time sequences of all K satellites 75 1S expressed as

Trise = ({t 1}n 17{ r2}n 27 t?,K}iV:K>’ (1)

Uk M is the rise-time sequence of the k-th
satellite with Nj bemg the number of visiting states of the
k-th satellite in the considered time interval [T}, Ty]. Without
loss of generality, we assume both T} and T’y are located in
the off-time of all satellites. Similarly, the set-time sequences

of all K satellites 7y is given by
n N
mow = ({0 ) s @

N

where t, = {t?k} * is the set-time sequence of the k-th
satellite. =

Next, we define two types of time intervals associated with
these sequences. The on-time is the time interval between
the rise- and set-time, which corresponds to the duration of
a visiting state. The off-time is a time interval between two
visiting states. On-time sequence for all K satellites 7o, is
defined as

Ton = <{[t?,17t2,1]}71:[;1 AR {[tTK’ T;K]}j:[:l) G

where ¢, 3, = {

where ton 1 = denotes the on-time sequence

N
{iEmetnd}
of the k-th satellite. Off-time sequences of the satellites 7o¢

is also expressed as

N +1 Ng+1
Toftf = ({toff 1 ' { off |k ~ ) (4)
where
Ne+1
tott = (B by = { [Tosthil [ 2], B0, T}
)

The state E(t,k) denotes the visiting state of the k-th
satellite at time instant ¢, defined as

E(t k) o Eona te ton,k (6)
" By, tE tomi

where E,, and E.g refer to on-time and off-time states,
respectively. For simplicity, in the following we remove the
time component ¢ and denote the state of satellite & by FE (k).

A. Computation Model

Each satellite k gathers a local dataset Dy, = {z1,...,Zp, }
from the Earth where «; and D), denote the i-th sample and
the number of samples of this satellite, respectively. This data
is used to train a ML model in which each satellite k£ builds
a loss function Fy(w) expressed as

1
Bew)=5->__, ful@w), ™

where fi(z,w) is the per-sample loss function at satellite k
and builds upon the learning target which can be any convex
or non-convex function. The vector w denotes the parameter
describing the model.

Local raw dataset of each satellite is kept private, i.e., it is
shared neither with other satellites nor with the GS. Satellites
aim to collaboratively minimize a global loss function

Fw)=Y_  — Fiw), @®)

where D =}, - Dy is the total number of samples. Unlike
the well-known FedAvg algorithm [4], which has only one
counter for the global epoch, we define counters for the GS
and each satellite. The global epoch of the model is denoted
as n which is kept track by the GS. In addition, for any
satellite k£, a local counter n;, is defined to track the satellite
participation. For example, in a scenario with synchronous FL
and full client participation, n; = n for all k. We further define
w" to be the global model parameters at epoch n. Assuming
each satellites trains the model locally for [ iterations using
stochastic gradient descent (SGD), the local model parameters
of satellite k at iteration 7 > 1 are

— 7 Fp(w»' ), 9)

where w)* % is the global model received by satellite £ in its
ng-th update and 7 is the learning rate. Following the linear
computation time model from [8], the time ¢;(k) required by
satellite k£ to compute an update to the global model is
Ck-I S Dk
ti(k) = 2 I5Ds)

Vi

Nk, ng,t—1
W™ =Wy

(10)

where ¢ is the number of CPU cycles required to process a
single data bit, S(Dy,) is the size of data in bits, and vy, is the
CPU frequency.

B. Communication Model

Communication between a satellite and the GS is possible
if the line of sight between them is not blocked by the Earth,
i.e., satellite k is in the on-time period with E(k) = E,,. The
signal to noise ratio (SNR) between the k-th satellite and the
GS is written as [9]

M f E k == Eon
SNR(k, GS) = { NoL(kGS)> ! (k) - an
0, if E(k) = Eor,

where P; is the transmission power, G and Ggg are the
average antenna gains of satellite k£ towards GS and vice versa,
Ny = kpTB is the total noise power with kg = 1.380649 x
10723 J/K being the Boltzmann constant, T is the receiver
noise temperature, and B is the channel bandwidth. Free space
path loss L(k,GS) between the k-th satellite and the GS is

expressed as

2

4 fed(k, GS)) 7 (12)
c

L(k,GS) = (

where f. is the carrier frequency, c¢ is the speed of light,
and d(k,GS) is the distance between satellite k& and the
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Fig. 2. Satellite scheduling Algorithm.

GS. Maximum achievable data rate for satellite & under the
Gaussian channel assumption is

R(k,GS) = Blog, (1 + SNR(k, GS)). (13)

We use the longest distance between each satellite and the GS
in each on-time duration to derive the SNR and rate. The time
for exchanging the model parameters w between satellite %
and the GS then is

Sw)  d(k,GS)

te(k,GS) = , 14
(k:GS) = 7. a9 c (14
where R(Sk(,uc,:)s) and d(k’CGS) are the required time for transmis-

sion and propagation, respectively, and S(w) is the data size
of w in bits.

III. THE PROPOSED SCHEDULING ALGORITHM

As mentioned above, a satellite can communicate with the
GS when there is a line of sight link between them which
means satellite & is in the E,, state. As a noteworthy fact, the
rotation of Earth causes duration between visits of a satellite
to the same GS to be different from its orbital period 7.

Federated Averaging (FedAvg) algorithm is a well-known
and widely employed FL procedure [4], [10]. Using it to
train a FL model on satellites with full client participation [6]
roughly works as follows: 1) The GS transmits the global
model parameters to all satellites when they visit; 2) Satellites
train the model using local SGD; 3) Satellites send the updated
local parameters to the GS upon their next visit; and 4) The
GS aggregates received model parameters from all satellites.

Implementing FedAvg in ground-assisted FL on satellites
scenarios leads to very slow model convergence because
satellites visit the GS at different times and the GS has to
wait for all updates to receive before starting a new global
epoch. An asynchronous version of FedAvg algorithm, named
FedSat, is proposed in [5] for the satellite scenarios and shown
to significantly reduce the convergence time. In FedSat, the
GS updates the global model parameters whenever it receives
updated local parameters from one of the satellites.

In this paper, we propose a general approach that helps in
implementing the FL for any form of satellite constellation.
This approach, as shown in Fig. 2, consists of three consecu-
tive steps. The inputs are the satellites and the GS information
such as the number of satellites and their altitudes, inclinations,
and initial positions, plus the position of the GS.

With this input data, in the first step, the visiting pattern
between each satellite and the GS can be obtained in the

I visible to GS Non-visible to GS

Visiting pattern of satellites

T T T
12:00 18:00 24:00

Time (hour)

T T
00:00 06:00

Fig. 3. Visiting pattern of 10 satellites and the GS in Bremen in one day.
Satellites S1 to S5 are at altitude 500 km and Sg to S1g are at altitude 2000
km.

considered time i.e. [T3,T%]. An example of this visiting
pattern is illustrated in Fig. 3. This figure presents the visiting
pattern for a period of 24-hour between the GS, located in
Bremen, and ten satellites. Five of the satellites, S to S5, are
at altitude 500 km and the other five, Sg to S1g, are at altitude
2000 km. The rise-time, Tyige, S€t-time, T4etr, ON-time, 7o, and
off-time, 7,g, of all satellites are derived in this step. Let us
define the visiting pattern, VP, as

VP = (Trise7 Tset) .

In the second step, a scheduling algorithm is designed based
on the derived VP. For example, the algorithm that will be
proposed in Section III-B uses VP to determine whether the
satellite trains the next model iteration while being offline or
during its next visit to the GS. This is illustrated in Fig. 4.
Scheduling algorithm in the second step leads to determining
the transmission times between the satellites and the GS in
the third step, i.e., the time intervals in which the UL and DL
transmissions to exchange the model parameters happen are
extracted. Let us define the sequence of transmission referring
to these time intervals as

15)

ST = (TuL,TDL), (16)

where Ty1, and Tpy, are tuples specified by
TurL, = (tu,1, tu,2s ooy tu i) 5 17)
™1 = (ta,15td,2s - td,K) (18)
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Fig. 4. Flow chart of FedSatSchedule algorithm, the red and green colors
represent the off-time and on-time intervals, respectively. MP stands for model
parameters.

where ¢, 5, and t4; are sequences of the UL and DL trans-
mission times associated with the k-th satellites, given by

n Uk

tug = {tu i} 21 (19)
n Dy,

tak = {th nil- (20)

In (19) and (20), Ux and D; stand for the total number of
UL and DL transmissions of the k-th satellite, respectively. To
obtain the optimal S7, we formulate an optimization problem
expressed as

ST* = argmax C(VP,ST),
ST

21

where C, as a function of VP and ST, is a desired design
criterion which should be defined based on the requirements
of any specific problem. An example of this criterion function
is given in section III-B.

By using the proposed three-step thorough model, in the
following, we present a new scheduling algorithm named as
FedSatSchedule. To define this scheme, at first, we briefly
explain FedSat, the scheme that we proposed in our previous
work [5].

A. Federated Learning for Satellite Constellations (FedSat)

One way to implement FL for the satellite constellations, is
using an asynchronous algorithm as presented in FedSat [5].
By this approach, we can benefit from the predictability
of satellites visiting pattern which helps to overcome the
intermittent connectivity between the GS and satellites.

In FedSat, each satellite exchanges the model parameters
with the GS when they visit each other. This means in the rise-

time, satellite k£ transmits the updated local model parameters
to the GS. Then, the GS updates global model parameters by

n+1 k—1,1

w

nk,l). (22)

=w" — oy (w) —w),

where oy, is %. Then, the GS transmits the updated model
parameters to that satellite. Again, the satellite trains the model
in the off-time period and transmits the model parameters
to the GS in the next rise-time. This algorithm does not
take on-time and off-time durations into account. However,
if the satellite’s next visit to the GS will be long enough to
complete the training during that visit, obtaining the global
model already at the current visit will lead to considerable
model staleness, which has a negative impact on convergence.
Exploiting this simple observation is the key idea behind the
FedSatSchedule algorithm proposed next.

B. Federated Learning Scheduling for Satellite Constellations
(FedSatSchedule)

In FedSat scheme, as mentioned above, the duration of
each visit i.e. ton % is not taken into account when deriving
tyr and tq) for ST. However, due to the fact that the
length of t,, 5 and t.g , are completely predictable, ST can
be determined such that a higher training accuracy can be
achieved in a shorter time frame. The FedSatSchedule scheme
uses these times to schedule the FL aimed at convergence time
reduction. Formalizing this in our general framework, (21) can
be converted to

ST* =argminCT(VP,ST)
ST

(23)

where C'T is the convergence time of the model which, in its
turn, is a function of VP and ST Solving this problem exactly
is challenging, as even the functional relation CT is difficult
to define. Instead, we take a heuristic approach that aims to
reduce the model staleness at the satellites while still ensuring
that every satellite provides a model update during each visit
to the GS. In particular, the scheduler predicts whether the
next visit to the GS is long enough to complete a local model
update. If this is the case, the satellite will receive the current
global model parameters upon its next contact to the GS.
Otherwise, it will receive them immediately and compute its
update during its off-time. We design this procedure named
”FedSatSchedule” explicitly next.

In FedSatSchedule algorithm, in the current on-time i.e.
[t t% 1), the k-th satellite decides about the required opera-
tions based on comparing the duration of the next on-time and
the necessary time for training; whether t’;}'l - tfj;l < t1(k)
or not. The flow chart in Fig. 4, in detail shows the tasks to
be done during the n-th on-time period.

If the next on-time period, t"}' — ¢!, is shorter than the
required training time, #;(k), the satellite requests that the GS
sends the global model parameters in the same visit i.e. (n)-th
on-time period. Then, the satellite by using the received global
parameters, trains the model in the coming off-time period i.e.
[t ot H1]. Afterwards, in the (n + 1)-th on-time interval, it
transmits the updated parameters to the GS.

1105



0.6

Test Accuracy
o
o

| T i FedSatSchedule ¢;(k) = 30 sec.
02l L ] FedSatSchedule #;(k) = 15 min. |
i FedISatSchedule #; (k) = 30 min.
| - - - FedSat i
! Ll Ll Ll Ll Ll !
0 8 16 24 32 40 48
Time [h]

Fig. 5. Test Accuracy of a LEO constellation with 10 satellites and a GS
located in Bremen.

Instead, if the next on-time period is longer than the required
time for training, the satellite will have enough time for
training using more up-to-date parameters in the coming on-
time interval. Note that, in the off-time interval, the GS
keeps updating the model parameters based on the received
parameters from other satellites. Then, the k-th satellite had
better wait and receive up-to-date model parameters exactly
before starting to train in the next on-time interval. Hence,
the satellite instead of requesting for receiving the new model
parameters in the n-th on-time interval, will do it in the (n+1)-
th on-time. With the received parameters, the satellite trains
the model and transmits the updated model parameters to the
GS in the (n + 1)-th on-time. This approach results in higher
accuracy without adding more delay or using extra resources.

IV. NUMERICAL RESULTS

In this section, we present simulation results to show the ef-
fectiveness of the proposed scheme. We consider ten satellites
in 10 orbits; five of them are at altitude 500 km and the other
five are at altitude 2000 km with a GS located in Bremen. The
minimum difference in right ascension of the ascending node
(RAAN) between two near orbits of different altitudes is 36°.
The inclination and minimum elevation angles of all satellites
are set to 80° and 10°, respectively. All satellites and the GS
transmit the model parameters on channels with bandwidth
of 20 MHz with the transmission power set to 40 dBm. The
transmit and receive antenna gains are both set to 6.98 dBi.
The carrier frequency and the receiver noise temperature are
fe =2.4GHz and T = 290 K, respectively.

For training process based on [11], the well-known CIFAR
dataset with the ResNet-18 model is considered. The learning
rate, 7, and the batch sizes are set to 0.1 and 10, respectively.
The whole CIFAR dataset is divided between all satellites with
Non-IID settings such that five labels are given to the satellites
at altitude 500 and the other five labels to the other five at
altitude 2000 km.

We examine the impact of the training time of each satellite,
t;(k), on the test-accuracy. Fig. 5 shows the test accuracy for
three different training time, 30 seconds, 15 minutes and 30
minutes, for a period of two days. It depicts that our proposed
scheduling algorithm can noticeably improve the test accuracy
for the cases t;(k) = 30 seconds and ¢;(k) = 15 minutes
compared to the FedSat.

We observe if t;(k) = 30 seconds, it takes 48 hours
for the FedSat to have a test accuracy around 62%, while
for the FedSatSchedule, it takes only 16 hours, improving
the convergcne speed by a factor of three. FedSatSchedule
outperforms FedSat due to a proper scheduling to receive more
up-to-date model parameters.

By increasing the training time interval, as we see in the
case with the #;(k) = 30 minutes, the performances of the
FedSat and FedSatSchedule converge together. In such cases,
all satellites have, in practice, to train the model in their
off-time period. So, the FedSatSchedule cannot benefit from
having more up-to-date model parameters.

V. CONCLUSION

In this paper, we have presented a general approach for
optimally scheduling the transmission and reception time
of the model parameters between the satellites and the GS
for implementing FL in any constellation. Then, we have
specifically designed a scheduling algorithm, FedSatSchedule,
by considering the duration of each on-time. The numerical
results have shown that this scheme can accelerate the conver-

gence of FL.
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