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Abstract—This paper proposes an optimization technique for
satellite systems with flexible payloads. Unlike current satellites
whose per-beam capacity is fixed, forthcoming payloads will
have bandwidth and power allocation reconfiguration capabilities
allowing the operators to modify the offered capacity. Assuming a
generic flexible payload architecture, this paper introduces an op-
timization technique that is able to provide an efficient bandwidth
and power allocation that fulfil the user terminals rate requests.
Furthermore, we introduce a deep learning regression algorithm
able to reproduce the mapping of the proposed optimization tech-
nique with a very reduced computational complexity. By using the
output of the optimization technique as ground truth, we design a
deep neural network that behaves very similar to the optimization
problem yet with a dramatically reduced computational time.
Numerical results show the benefits of the proposed technique and
in particular, we observe two order of magnitude computational
time decrease when using the deep learning approach compared
to the classical optimization technique yet preserving almost the
same performance.

Keywords—Satellite communications, deep learning, power con-
trol.

I. INTRODUCTION

Current commercial multibeam satellite systems present a
fixed data-rate capacity at each beam. This fact strongly limits
the operator exploitation margin as regional user data rate
demands over a certain geographical area shall be predicted
when the satellite is built and maintained over the satellite
life which is generally about 15 years. Furthermore, mobile
user terminals (UTs) such as vessels and airplanes lead to
spatial temporal variations of the data-rate demands which
might cause certain beams to saturate over a certain period.

In order to solve this problem, future satellite payloads
will have reconfiguration capabilities. In particular, the on-
board analogue infrastructure will allow modular spectrum
channelization of each beam, providing a bandwidth and power
control over the coverage area. Examples of future flexible
payloads are Eutelsat Quantum and Inmarsat-6.

Although commercial flexible payloads are currently start-
ing to be launched, academia has investigated them in the
last fifteen years [1]–[4]. On the one hand, the works [1],
[2] introduced the on board technology advances required for
the creation of flexible payloads such as preliminary heuristic
optimization methods. On the other hand, in [3] the authors
assume an arbitrary payload architecture able to increase the
flexibility of the allocation of power and bandwidth over the
different beams and additional heuristic optimization methods.
Finally, the work in [4] introduces a simulated annealing
technique for solving a mixed integer linear program that
models a particular flexible payload allocation optimization
problem.

In contrast to the mentioned works, in this paper we
introduce a new optimization approach that provides efficient
solutions considering a generic flexible payload. In particular,
we focus on minimizing the sum the users service level agree-
ments (SLAs) violations, defined as the difference between the
requested data rate and the offered one by the satellite operator.
To the best of authors knowledge, the proposed approach is
novel, and it certainly collapses the real problem of flexible
satellite payload optimization. The resulting optimization prob-
lem is observed to be non-convex and, in order to solve it,
we use the concave-convex procedure (CCP) [5]. Although
CCP iterative method is able to yield an efficient solution, it
requires solving a large number of convex problems, limiting
its applicability in very short time-to-react events such as
sudden requests of traffic demands. Remarkably, the CCP
approach is ideal for large scale variations such as hourly data
rate demands or planned new customers deployment.

Inspired by the recent results on deep learning for power
allocation in different scenarios [6], [7], here we aim at using a
deep neural network (DNN) for mimicking the CCP implemen-
tation over the conceived optimization problem. Concretely,
we train a DNN with a plethora of channel realizations, data-
rate user demands, and their corresponding efficient power
allocation and we use this dataset as ground truth for designing
a DNN. The numerical simulations show that the proposed
DNN architecture can reproduce the power allocation efficient
solutions of the CCP method. The conceived DNN is very
attractive to the satellite industry as it is able to provide
efficient power allocations with a dramatically low number of
operations. A similar approach was carried out for satellite
communications in [8], [9] considering other optimization
problem and DNN approximation.

The rest of this work is organized as follows. Section 2
presents the power allocation problem for flexible payloads
and introduces the use of the CCP method for solving it. The
use of DNNs for power allocation is introduced in Section 3,
showing how the training can be performed. Numerical results
in Section 4 show the performance of the conceived DNNs for
this optimization framework. Section 5 concludes.

II. SYSTEM MODEL AND PROBLEM STATEMENT

The system under consideration is a satellite forward link
transmission with frequency-division multiple access. Perfect
channel state information is assumed both at the transmitter
(i.e. the satellite gateway) and the receivers (the satellite UTs).
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We consider a system with K feed elements (antennas) serving
K users over M subcarriers. Note that a carrier can be
occupied by one or more users.

We aim at finding a solution that guarantees the minimum
rate constraints. In particular, we assume that the k-th user
requires to transmit at least R̄k. Let H ∈ RK×K be the
channel gain matrix whose i, j entry (i.e. hi,j) is the channel
gain between the i-th transmit feed element and the j-th
receiver. Note that this channel gain is assumed to be the same
for all subcarriers m = 1, . . . ,M . This is due to the fixed
satellite system channel characterization, which considers a flat
frequency response over the available bandwidth. A schematic
of the described scenario is depicted in Figure 1.
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Fig. 1. Illustration of the system under investigation, here for a satellite with
M = K = 4. Different colors refer to different user signals.

In this context, the optimization problem can be described
as

minimize
{pk}K

k=1,{sk}
K
k=1

K∑
k=1

sk

subject to
Rk ≥ R̄k − sk ∀k,
sk ≥ 0 ∀k,
K∑

k=1

1T
Mpk = Pmax,

(1)

where

Rk =
M∑

m=1

log2

(
1 +

h2k,kpk,m∑
l ̸=k h

2
k,lpl,m + σ2

k,m

)
, (2)

where σ2
k,m is the additive white Gaussian noise power in the

m-th band of the k-th user. For the sake of simplicity, we will
consider that all satellite UTs have the same noise figure so that
σ2
k,m = σ2 for k = 1, . . . ,K and m = 1, . . . ,M. Moreover,

pk = (pk,1, . . . , pk,M )
T (3)

is the power allocation vector of the k-th user over the M
carriers. We assume that Pmax is the maximum available power
at the satellite payload. Finally, sk is the rate violation of the
k-th user; that is, the difference between the offered rate, Rk,
and the rate demand, R̄k.

It is important to remark that in here we opt to consider
that the satellite is employing all the available power Pmax.
As a general statement, this restriction naturally comes from

the satellite payload radio-frequency design where the radiated
power budget is designed considering a 15 years life cycle
considering full power transmission. Indeed, in spacecraft
satellite design, radiofrequency subsystem mass and power
budget are designed considering worst-case scenario where the
satellite continuously uses all available power. That is, our
optimization approach is in line with general satellite mission
designs. Of course, conceiving a power control algorithm
capable of providing energy efficiency to the system while
minimizing the user rate demands violation is of interest.
However, in here our focus is the rate violation minimization.
The study of energy efficiency algorithms is left for further
work.

The optimization problem in (1) is a non-convex problem.
Here, we aim at solving this problem with the CCP method
[5]. This method is majorization-minization algorithm [10] that
approximates the concave parts of the optimization problem by
its first order Taylor expansion. Let us re-write the optimiza-
tion problem (1) in standard form by considering the power
minimization as objective function

minimize
{pk}K

k=1,{sk}
K
k=1

K∑
k=1

sk

subject to
fk(pk) + gk(pk) + R̄k − sk ≤ 0 ∀k,
sk ≥ 0 ∀k,
K∑

k=1

1T
Mpk = Pmax,

(4)

where

fk(pk) = −
M∑

m=1

log2

(
K∑
l=1

h2k,lpl,m + σ2

)
, (5)

gk(pk) =
M∑

m=1

log2

 K∑
i̸=k

h2k,ipi,m + σ2

 . (6)

Bearing in mind the CCP method, the concave parts of the
optimization problem (i.e. gk(pk), ∀k) shall be sequentially
approximated via its first order approximation at a given point
p
[t]
k such as g′k(pk,p

[t]
k ). That is, given a solution at the t-th

iteration, the (t+ 1)-th is obtained via

minimize
{pk}K

k=1,{sk}
K
k=1

K∑
k=1

sk

subject to

fk(pk) + g′k(pk,p
[t]
k ) + R̄k − sk ≤ 0 ∀k,

K∑
k=1

1T
Mpk = Pmax,

sm > 0 ∀m

(7)

where

g′k(pk,p
[t]
k ) = gk(p

[t]
k )+

M∑
m=1

∑K
i ̸=k h

2
k,i

(
pi,m − p

[t]
i,m

)
∑K

i ̸=k h
2
k,ip

[t]
i,m + σ2

. (8)
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The CCP technique starts from a random feasible point
{p[0]

k }Kk=1 and it sequentially solves the optimization problem
in (7). This sequence of optimization problems converges to a
stationary point of the original optimization problem in (1) as
reported in [5].

In light of the above result, a satellite network operations
center could rely on CCP technique for hourly data rate
demand variations, R̄k, as the resulting algorithm has a limited
computational complexity of solving a sequence of convex
problems via interior point methods. On the contrary, for
short-term SLAs variation, a technique with a much lower
computational complexity is required. In this context, we
introduce the use of deep learning in the following Section. The
main idea is to use the already proposed technique as ground
truth data and design a DNN able to mimic its behaviour with
a substantially lower complexity.

III. OPTIMIZATION BY DEEP LEARNING

The conceived iterative algorithm CCP can be described as
an unknown non-linear function. In particular, we can consider
that the CCP method previously presented is an unknown
mapping such that

ψ(d) = y, (9)

where d =
(
h1,1, . . . , hK,K , R̄1, . . . , R̄K

)T
,

and y =
(
pT
1 , . . . ,p

T
K

)T
.

Note that we are not considering the whole solution of the
optimization problem in (1) composed by {pk}Kk=1, {sk}Kk=1,
but only {pk}Kk=1. This is because the output of interest is
{pk}Kk=1 and the resulting violation values can be obtained by
computing the data rates considering {pk}Kk=1.

In this Section, we aim at describing how a DNN could
model the function ψ(·). In particular, bearing in mind that
DNNs are universal function approximators [11], we train
a fully connected feedforward DNN for being capable of
learning the function ψ(·). For training convenience and as we
describe in the following, we have used as data a normalized
version of y such that ynormalized = 1

Pmax
y.

DNNs consists of a series of sequential operations gen-
erally coined as layers. Commonly, the first layer is coined
as input layer and it fuels the input data into the network.
For our case, the input layer has dimensions of K2 + K
(i.e. the dimensions of d). This data passes through L hidden
layers and an output layer. Each of the layers have Nl neurons
(i.e. processing units) for l = 1, . . . , L + 1. The output layer
dimensions, NL+1, are imposed by the dimensions of y which
are KM .

The input data is sequentially processed by the different
layers. Coining xl−1 the data input of the l-th layer and having
x0 = d, the output at the n-th neuron can be written as

[xl]n = Fn,l

(
wT

n,lxl−1 + bn,l
)
, (10)

where wn,l and bn,l are the weights and the bias terms so as
Fn,l(·) is the activation function. In order to impose the sum-
power constraint included in (1), we use as output activation
function the softmax [12]

Fn,L+1(xL) =
e[xL]n∑NL

i=1 e
[xL]i

. (11)

TABLE I. SATELLITE SYSTEM SPECIFICATIONS

Maximum radiated power (Pmax) 25.8 dBWatts
Channel bandwidth 500 MHz
Carrier frequency 20 GHz

Roll-off factor 0.2
UT receive antenna gain 42.2 dB

Satellite antenna radiation pattern provided by ESA/ESTEC
Channel characteristics path loss model in [13]

Number of beams 7
User data rate demands Uniformly distributed

This activation function imposes that the sum of all elements of
xL is equal to one. This activation function naturally serves us
to guarantee that the output of the DNN fulfils the available
power budget constraint, Pmax as the transmit power can be
obtained with p̂ = PmaxxL. For the other hidden layers, we
have used the rectified linear units (ReLU) [12].

The DNN design is based on obtaining efficient weights
and bias values for all neurons. This optimization relies on

a set of Q pairs
{
(d(q),y

(q)
normalized)

}Q

q=1
where each pair

corresponds to an input and output data of the CCP method
over Q realizations.

Being o(q) the output of the DNN for a certain input
d(q), in order to obtain efficient weighting and bias values,
we optimize

Total Loss (W,b) =
1

Q

Q∑
q=1

L
(
o(q),y

(q)
normalized

)
, (12)

where W contains the DNN weights, b the bias values and
L(·, ·) denotes the loss function. The selection of the loss func-
tion is intrinsically related to the data and the final application.
In recent results of deep learning for power allocation schemes,
there is a common usage of the minimum squared error (MSE).
This is the one we used here as well.

IV. NUMERICAL RESULTS

We consider a multibeam satellite system that serves K =
7 UTs. The path-loss model employed from [13] has been used
considering the parameters described in Table I. The number of
carriers, M has been set to 4, leading to a subcarrier bandwidth
of 125 MHz. The data rate demands R̄k is assumed uniformly
distributed from 150 to 400 Mbit/s at each beam.

The dataset for every scenario has been obtained with
20000 realizations. The training of the DNN is done through
the 80 % of the data set (Q = 16000). The remaining 20 % of
the computed data set is used for validating the DNN design.
All numerical results shown in the following corresponds to
the results of this validation data set.

The considered DNN has L = 4 hidden layers. The training
of DNN is performed considering stochastic gradient descent
and the learning rate is governed by the Adam method [14].
Regularization is ensured by early stopping. In here we use the
definition of regularization reported in Section 5.2.2 of [12] as
any technique aiming to reduce the validation error. The reader
can find more details of early stopping and other regularization
techniques in Chapter 7 of [12].

Hyperparameter selection includes the number of units
at each hidden layer and the learning rate. Sets of hyper-
parameter values are generated randomly and the preferred
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set is determined according to validation results [15]. The
ranges of hyperparameters are as follows: number units of the
hidden layers, (150, 400), learning rate, (10−3, 10−2). For the
considered dataset, 100 hyperparameter combinations are tried
in a random search and we retain the best performing model.

Figure 2 shows the empirical cumulative distribution (CDF)
of the sum of violation values (i.e. the objective function of
the optimization problem in (1)) given the mentioned scenario.
The blue curve indicates the results of the CCP procedure used
as benchmark while the red one indicates the data rate for the
DNN output. It can be observed that in both cases the DNN
yields very close data rates to the ones with CCP. For the
sake of completeness, we include in the Figure the violation
values given a pure random power allocation which is shown to
perform poorly compared to both of our proposed techniques.
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Fig. 2. Empirical CDF of the rate violation values ({sk}Kk=1) of the
validation dataset.

Considering the average values, CCP yields to a sum viola-
tion of 28.07 Mbit/s while the DNN approach results in 28.53
Mbit/s. This very low difference between the ground truth
(CCP) and the obtained model with DNN shows the potential
of deep learning in mimicking flexible payload optimization
techniques. In addition, the violation obtained via random
power allocation is 56.59 Mbit/s.

We also evaluated the elapsed time of both techniques.
For the CCP, we obtained an average computational time of
62.1 seconds while for the DNN the average elapsed time
is 0.041 seconds. These two orders of magnitude reduction
of the computational time enhances the potential of DNN in
optimizing flexible payloads. These results have been obtained
in the same personal computer using scripting programming
languages.

V. CONCLUSIONS

This paper proposed an optimization framework able to
tackle flexible payload configurations design. Given a set of
required SLAs, the conceived technique based on the CCP was
able to provide a carrier and power allocation in order to meet
the data rate requests. We introduced a DNN design able to
learn the described optimization leading to a solution with a
very short computational time. The obtained technique is a

promising tool for next generation satellite network operations
centres where payload reconfiguration optimization will take
place.
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