
Evaluating Short-Term Forecasting of Multiple
Time Series in IoT Environments

Christos Tzagkarakis1, Pavlos Charalampidis1, Stylianos Roubakis1,
Alexandros Fragkiadakis1 and Sotiris Ioannidis2,1

1Foundation for Research and Technology-Hellas, Institute of Computer Science, Heraklion, Greece
2Technical University of Crete, Chania, Greece

E-mails: {tzagarak, pcharala, roub, alfrag}@ics.forth.gr, sotiris@ece.tuc.gr

Abstract—Modern Internet of Things (IoT) environments are
monitored via a large number of IoT enabled sensing devices,
with the data acquisition and processing infrastructure setting
restrictions in terms of computational power and energy re-
sources. To alleviate this issue, sensors are often configured to
operate at relatively low sampling frequencies, yielding a reduced
set of observations. Nevertheless, this can hamper dramatically
subsequent decision-making, such as forecasting. To address
this problem, in this work we evaluate short-term forecasting
in highly underdetermined cases, i.e., the number of sensor
streams is much higher than the number of observations. Several
statistical, machine learning and neural network-based models
are thoroughly examined with respect to the resulting forecasting
accuracy on five different real-world datasets. The focus is given
on a unified experimental protocol especially designed for short-
term prediction of multiple time series at the IoT edge. The
proposed framework can be considered as an important step
towards establishing a solid forecasting strategy in resource
constrained IoT applications.

Index Terms—Internet of Things, multiple time series, short-
term forecasting, rolling window tuning, machine learning, neural
networks

I. INTRODUCTION

With the advent of the Internet of Things (IoT) era, the
concept of Internet networking has been shifted into a ubiqui-
tous interconnection between users, data and smart devices
or sensors in a seamless way [1], [2]. A wide range of
applications has emerged at the forefront of IoT technology
spanning from smart cities [3], [4], smart homes [5], [6]
and wearables [7], [8] to energy management [9], predictive
maintenance [10], automotive driving [11], etc. The modern
IoT systems are typically decomposed into three levels, i.e.,
highly heterogeneous data are captured from the surrounding
environment via several IoT devices/sensors at the edge level,
which then can be transmitted through the fog layer up
to the cloud for further storage and processing. However,
the rapidly growing use and realization of IoT technology
comes at the cost of resolving major technical and business
impediments as reflected in dynamicity, scalability and hetero-
geneity [12], [13].

Specifically, a dynamically adaptive behaviour is followed
at the IoT infrastructure, at the IoT applications and at the
IoT devices, and thus it is imperative to promote a (semi)-
automatic behaviour within all IoT layers. This gives rise to the
pursuit of high scalability properties from the network layers

as well as from the IoT infrastructure. In addition, enhanced
heterogeneous behaviour as a result of the extensive use and
interconnection of a large volume of diverse IoT devices
should be addressed through the concept of efficient semantic
interoperability within IoT applications and platforms. These
IoT inter-layer characteristics could promote a direct data
analysis at the IoT edge as a very important factor within
IoT systems.

Typically, a large number of sensing devices is used to mon-
itor IoT environments. The data acquisition and processing
modules impose restrictions in terms of computational power
and energy resources at the edge level. These constraints can
be handled by configuring the sensors to operate at relatively
low sampling frequencies, yielding a reduced set of observa-
tions, which can be further analyzed by adopting lightweight
algorithmic procedures. This motivates us to investigate the
short-term forecasting of multiple sensor streams at the IoT
edge. Specifically, we assume that a set of sensing devices is
used to collect time series data from the IoT environment,
where the number of time series is much higher than the
number of observations per sensor. Instead of predicting the
future values of each sensor stream separately, each sensor’s
collected time series can be transmitted from the edge to an
aggregation mechanism such as an edge gateway. As such, an
overall (global) forecasting model can be computed based on
the aggregated multiple time series, considering in this way
the inherent relationships between the acquired time series.
Related work. Recent works have dealt with the multiple time
series forecasting task by focusing on IoT-related data. A block
Hankel tensor-based autoregressive integrated moving average
(BHT-ARIMA) method is described in [14] that exploits the
intrinsic correlations among multiple time series. The authors
in [15] introduce a long short-term memory multiseasonal net-
work (LSTM-MSNet), i.e., a three-layered forecasting frame-
work using LSTMs that accounts for the multiple seasonal
periods present in time series. Short-term electricity load
forecasting is examined in [16], where random forest (RF)
models are used to forecast time series with multiple seasonal
variations. In [17] a comprehensive time series forecasting
benchmarking archive is proposed that contains twenty-five
publicly available time series datasets from various domains,
with different characteristics in terms of series lengths, time
resolution, and inclusion of missing values.

1116ISBN: 978-1-6654-6798-8 EUSIPCO 2022

Contribution. The contribution of the current paper is
twofold. Firstly, we establish a solid multiple time series fore-
casting protocol for single-step prediction, especially targeted
in IoT use cases. Secondly, a set of five different real-world
IoT datasets is thoroughly examined by using off-the-shelf
statistical, machine learning and neural network methods as
well as scale-free and percentage error-based accuracy metrics.

The rest of the paper is organized as follows: Section II
overviews the problem formulation. The proposed multiple
time series prediction protocol is described in Section III,
while Section IV demonstrates the experimental evaluation in
light of the forecasting accuracy on five real-world datasets.
Finally, Section V summarizes the main results and gives
directions for further extensions.

II. PROBLEM FORMULATION

Let us assume that a collection of N equal length time series
can be written in matrix form

Y =

y1

...
yl

...
yL

 =

y11 y21 . . . yN1
...

...
...

y1l y2l . . . yNl
...

...
...

y1L y2L . . . yNL

 ∈ RL×N , (1)

where each row yl = [y1l . . . y
N
l] ∈ R1×N , l ∈ {1, . . . , L},

represents the l-th observation of all time series and each
column yn = [yn1 . . . ynL]

T ∈ RN×1, n ∈ {1, . . . , N}, denotes
the time series captured by the n-th sensor. Our main goal
is to compute a forecasting model M, which uses historical
observations of the multiple time series Y to predict the future
values

Y(f) =

yL+1

...
yL+h

 =

y
1
L+1 y2L+1 . . . yNL+1
...

...
...

y1L+h y2L+h . . . yNL+h

 ∈ Rh×N

(2)
for a given forecasting horizon h. In this work, we assume a
single-step forecasting horizon h = 1, and thus the matrix (2)
collapses into a vector

y(f) = [y1L+1 y
2
L+1 . . . yNL+1] ∈ R1×N . (3)

A prediction model M can then be defined as

ŷ(f) = M(Y,θ), (4)

where

ŷ(f) = [ŷ1L+1 ŷ
2
L+1 . . . ŷNL+1] ∈ R1×N (5)

denotes the predicted samples within the single-step forecast-
ing horizon, and θ are the model parameters. It is obvious
that the smaller the difference between the actual y(f) and the
predicted ŷ(f) samples, the more accurate the future samples
prediction is.

A. Forecasting Models

The forecasting model M can be estimated through var-
ious approaches grouped into three main categories, namely
the statistical, the machine learning and the neural network
methods. BHT-ARIMA [14] is the statistical model used in the
current work, while support vector regression (SVR) [18] and
RF model [16] correspond to the adopted machine learning ap-
proaches. The used neural network-based methods correspond
to long short-term memory (LSTM), bidirectional LSTM (Bi-
LSTM) and convolutional neural networks (CNN) [19], [20]
as well as to echo state network (ESN) [21]. Each forecasting
model’s input data should be transformed into the appropriate
shape for training, hyper-parameter tuning and testing pur-
poses. Next, more details on the data shaping process and
the overall forecasting protocol are provided.

III. FORECASTING PROTOCOL

A specific sequence of steps must be followed to estimate
the future samples y(f) through the forecasting model M. As
a first step, it is important to perform data scaling, since in
real-world IoT applications, the collected time series contain
observations with different value ranges. The min-max scaler

yn
sc =

yn − yn
min

yn
max − yn

min

, n = 1, . . . , N (6)

is used for data normalization, with yn
sc representing the scaled

observations of the n-th time series, while yn
min and yn

max are
the minimum and maximum values of the n-th time series,
respectively. The scaled version of the multiple time series (1)
can be written as Ysc ∈ RL×N .

The second step involves data training/validation of each
forecasting model mentioned in Section II-A. To properly
train and validate each forecasting model based on the
available data, we need to follow a rolling window-based
cross-validation procedure towards identifying the best hyper-
parameter configuration per model. In the following sub-
sections, we describe the different types of cross-validation
methods per forecasting model category. Before proceeding,
let us define the notations: [i]A denotes the i-th row of matrix
A, [i:j]A is the submatrix of A from row i to row j and Ŷsc

is the predicted counterpart of Ysc.

A. Rolling Window: Matrix Case

In the case of SVR and RF machine learning models, it is
necessary to perform hyper-parameter tuning by using the pair
of training data submatrices

(
[1:Ltr−1]Ysc,

[Ltr]Ysc

)
, where

Ltr < L defines the amount of training data in each cross-
validation iteration. In particular, each machine learning model
is trained on this pair of data submatrices, where the trained
(for a specific hyper-parameter configuration) model’s fore-
casting performance is then evaluated on the first validation
fold [Ltr+1]Ysc, obtaining the validation error of the form

e1v = J
(
[Ltr+1]Ysc,

[Ltr+1]Ŷsc

)
, (7)

where J is the function which determines the forecast-
ing accuracy between the original multiple time samples

1117

and the predicted ones. Next, the second training data pair(
[2:Ltr]Ysc,

[Ltr+1]Ysc

)
is composed by sliding the training

window one step forward, yielding the second validation error

e2v = J
(
[Ltr+2]Ysc,

[Ltr+2]Ŷsc

)
(8)

for the same hyper-parameter configuration. We keep moving
the window forward one step at a time until the computation
of the last validation error

eLv
v = J

(
[Ltr+Lv]Ysc,

[Ltr+Lv]Ŷsc

)
(9)

based on the trained model fed with the data(
[Ltr−1:Ltr+Lv−2]Ysc,

[Ltr+Lv−1]Ysc

)
, where Lv = L− Ltr

denotes the amount of validation data. The best hyper-
parameter configuration corresponds to the minimum mean
validation error

ev =
1

Lv

Lv∑
k=1

ekv . (10)

For BHT-ARIMA, we follow a similar hyper-parameter
tuning concept by providing [1:Ltr]Ysc as training data input
to the model during the first cross-validation iteration, and
computing the first validation error (7). The training window
is then shifted forward by a single step to obtain the second
training data input [2:Ltr+1]Ysc, and thus providing the second
validation error (8). The rolling window process is repeated
until the last training segment [Ltr−1:Ltr+Lv−1]Ysc, with the
last validation error computed as in (9). The optimal hyper-
parameter combination corresponds to the minimum mean
validation error (10).

B. Rolling Window: Multi-dimensional Matrix Case

In the case of LSTM, Bi-LSTM and CNN neural net-
work models, a slightly different rolling window-based cross-
validation methodology is followed. Specifically, an addi-
tional hyper-parameter S < Ltr is introduced, which de-
termines the rolling window length. Next, a pair of data(
[1:S]Ysc,

[S+1]Ysc

)
is formed. The rolling window of length

S is then shifted forward by a single step composing the
second pair

(
[2:S+1]Ysc,

[S+2]Ysc

)
of data. This rolling win-

dow scheme is repeated until the assembly of the last pair(
[Ltr−S:Ltr−1]Ysc,

[Ltr]Ysc

)
. To properly feed the LSTM, Bi-

LSTM and CNN model with the training input data, we need
to concatenate these pairs as follows([

[1:S]Ysc ,
[2:S+1]Ysc , . . . ,

[Ltr−S:Ltr−1]Ysc

]
,[

[S+1]Ysc ,
[S+2]Ysc , . . . ,

[Ltr]Ysc

])
.

(11)

The trained neural network model (for a particular hyper-
parameter combination) is fed with [Ltr−S+1:Ltr]Ysc to com-
pute the first validation error (7). The second validation
error (8) is estimated based on the data [Ltr−S+2:Ltr+1]Ysc,
while the last validation error (9) is obtained given the data
[Ltr−S+Lv :Ltr+Lv−1]Ysc, and the optimal hyper-parameter
configuration corresponds to the minimum mean validation
error (10).

C. Rolling Window: Matrix List Case

Here, we overview the rolling window-based cross-
validation methodology in the case of ESN model. In par-
ticular, let us introduce an extra hyper-parameter S < Ltr as
in the previous subsection. The following training pairs((

[1:S]Ysc,
[2:S+1]Ysc

)
,
(
[2:S+1]Ysc,

[3:S+2]Ysc

)
, . . . ,(

[Ltr−S:Ltr−1]Ysc,
[Ltr−S+1:Ltr]Ysc

))
(12)

are then composed and used as input to train the
ESN model (given a specified hyper-parameter com-
bination). After the ESN training process, the pair
of data

(
[Ltr−S:Ltr−1]Ysc,

[Ltr−S+1:Ltr]Ysc

)
is fed as

input to the trained ESN model in order to com-
pute the first validation error (7). The second valida-
tion error (8) is estimated based on the pair of data(
[Ltr−S+1:Ltr]Ysc,

[Ltr−S+2:Ltr+1]Ysc

)
. This rolling win-

dow process is repeated until the last training data input(
[Ltr+Lv−S−1:Ltr+Lv−2]Ysc,

[Ltr+Lv−S:Ltr+Lv−1]Ysc

)
pro-

vides the last validation error (9). As in the two rolling window
schemes above, the minimum mean validation error (10)
provides the optimal hyper-parameter configuration.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the short-term multiple time
series forecasting models on real-world time series datasets
based on the protocol described in Section III.

A. Datasets Description

We use five publicly available multiple time series datasets
that correspond to various practical IoT applications. Specif-
ically, the Energy Consumption Fraunhofer dataset1 contains
the measured energy consumption, with an hourly time res-
olution, of 499 customers (each customer is assigned to one
of the 68 customer profiles such as private households, shops,
bakeries) in Spain. The energy consumption is measured in
kilowatt hour (kWh). Each time series contains the consump-
tion values within the measurement period of Jan. 1 to Dec. 31,
2019. In the current experimental framework, the mean daily
energy consumption of each customer’s household is used, and
thus the final dataset consists of 314 time series (customers)
and 365 (daily) measurements per time series.

The Electricity Load Diagrams dataset2 corresponds to
electricity measurements across 370 households in Portugal
from 2011 to 2014, with a 15 minutes time resolution. Here,
we use the total amount of energy consumption per customer
in a daily basis during the period Jan. 1, 2012 to Dec. 31,
2014, providing an overall dataset of size 324 time series by
1096 measurements.

The Guangzhou Traffic dataset3 is an urban traffic speed
dataset collected in Guangzhou, China, which consists of 214

1https://fordatis.fraunhofer.de/handle/fordatis/215
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
3https://zenodo.org/record/1205229\#.YguzWN9BxaR

1118

TABLE I
DATASETS INFORMATION

Dataset Number of
time series

Number of
samples per
time series

Time
resolution

Energy Consumption Fraunhofer (D1) 314 365 daily
Electricity Load Diagrams (D2) 320 1096 daily
Guangzhou Traffic (D3) 206 1464 hourly
San Francisco Traffic (D4) 862 104 weekly
London Smart Meters (D5) 504 9983 half hourly

anonymous road segments within the period Aug. 1 to Sep.
30, 2016 at 10 minutes interval. Since the original dataset
contains missing values, the road segments containing non-
zero values are only kept. During the experimental evaluation,
we use the mean hourly traffic speed per road segment, and
thus the final dataset’s size is 206 time series (road segments)
by 1464 measurements.

The San Francisco Traffic dataset4 is a collection of hourly
time series, representing the traffic occupancy rate of different
car lanes of San Francisco bay area freeways between 2015
and 2016. The size of the used dataset is 862 time series by
104 measurements.

The London Smart Meters dataset5 consists of 5560 half
hourly time series that represent the energy consumption
readings of London households in kWh from Nov. 2011
to Feb. 2014. Here, we select 504 households with energy
consumption during Oct. 23, 2012 until May 18, 2013 leading
to 9983 measurements per time series. The overall datasets
information is presented in Table I.

B. Performance Metrics

We employ percentage error-based and scale-free error met-
rics to assess the accuracy of the forecasting models. Three er-
ror metrics are used in the context of multiple time series short-
term forecasting within a prediction horizon h = 1, namely
the symmetric mean absolute percentage error (sMAPE), the
recently proposed mean arctangent absolute percentage error
(MAAPE) [22] and the mean absolute scaled error (MASE)
given by

sMAPE
(
y(f), ŷ(f)

)
=

1

N

N∑
n=1

2

∣∣ynL+1 − ŷnL+1

∣∣∣∣ynL+1

∣∣+ ∣∣ŷnL+1

∣∣ (13)

MAAPE
(
y(f), ŷ(f)

)
=

1

N

N∑
n=1

arctan

(∣∣∣∣ynL+1 − ŷnL+1

ynL+1

∣∣∣∣)
(14)

MASE
(
y(f), ŷ(f)

)
=

1

N

N∑
n=1

∣∣ynL+1 − ŷnL+1

∣∣
1

L−1

L∑
l=2

|ynl − ŷnl |
, (15)

where y(f) and ŷ(f) is the original and predicted samples
vector, as defined in (3) and (5), respectively. The sMAPE is
used as the function J during the cross-validation process,
while sMAPE, MAAPE and MASE are used to evaluate

4https://zenodo.org/record/4656135\#.Ygu-o99BxaQ
5https://zenodo.org/record/4656091\#.YgvTLd9BxaS

the forecasting generalization (out-of-sample) performance of
each prediction model.

C. Hyper-parameter Tuning

Based on the forecasting protocol mentioned in Section III,
each dataset is split into a training (80%) and a validation
(20%) partition. For each prediction model, a different rolling
window-based cross-validation approach is followed to iden-
tify the best hyper-parameter combination, as discussed in
Section III-A- III-C. Hyper-parameter grid search is performed
for each model per dataset. Due to lack of space, we provide
a detailed description of the hyper-parameter grids per model
in https://github.com/pcharala/multiple-timeseries-forecasting.

D. Results

In this section, we compare the forecasting performance
of each prediction model M with the performance obtained
by predicting the future single-step y(f) based on the scaled
multiple time series Ysc. For this purpose, we perform simula-
tions on five real-world datasets described in Section IV-A. We
investigate the forecasting accuracy of each prediction model
for a varying length L of Ysc, i.e., the accuracy for a total
length L = 40 and L = 90 is examined for all datasets.
The single-step forecasting results are averaged over fifteen
Monte Carlo iterations, where during each Monte Carlo run,
a different part of the time series dataset is examined. The
average error metric per dataset is reported to show the overall
mean errors for each prediction model.

Table II shows the forecasting results measured in terms of
sMAPE, MAAPE and MASE. The datasets names D1 (Energy
Consumption Fraunhofer), D2 (Electricity Load Diagrams),
D3 (Guangzhou Traffic), D4 (San Francisco Traffic), D5 (Lon-
don Smart Meters) and the respective experimental window
configurations are depicted in the first two rows of the table.
The best sMAPE, MAAPE and MASE value is depicted in
blue, green and gray colour, respectively. As it can be seen,
the statistical (BHT-ARIMA) and machine learning (SVR, RF)
models achieve in general a better forecasting performance
against the neural network models (LSTM, Bi-LSTM, CNN,
ESN). This behaviour has been observed in other works (e.g.
in [14]) and can be attributed to the fact that neural networks
need more data to achieve a higher performance. Our analysis
code and data can be found on GitHub:
https://github.com/pcharala/multiple-timeseries-forecasting.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we address the problem of short-term fore-
casting of multiple time series in IoT environments, when
the number of time series is much higher than the number
of observations. Seven different prediction models are thor-
oughly examined on five real-world IoT datasets, applying a
unified experimental protocol especially designed for short-
term prediction of multiple time series at the IoT edge. It is
experimentally shown that the statistical and machine learning
models are generally outperforming the neural network-based

1119

TABLE II
FORECASTING RESULTS

DATASET D1 D2 D3 D4 D5
Sim. data 40 90 40 90 40 90 40 90 40 90

sMAPE 0.3369 0.3554 0.0969 0.0819 0.0797 0.1102 0.0742 0.1022 0.5209 0.4683
BHT-ARIMA MAAPE 0.2888 0.3035 0.0986 0.0756 0.0765 0.1050 0.0724 0.1025 0.4298 0.3988

MASE 0.1806 0.1905 0.0503 0.0247 0.3169 0.3569 0.1877 0.2576 0.7366 0.3829
sMAPE 0.3683 0.3816 0.0931 0.0765 0.0655 0.0930 0.0795 0.0946 0.4705 0.5047

SVR MAAPE 0.3275 0.3424 0.0933 0.0732 0.0666 0.0935 0.0766 0.0952 0.4383 0.4898
MASE 0.1867 0.1945 0.0421 0.0250 0.2697 0.3190 0.1978 0.2267 0.3878 0.4271
sMAPE 0.3200 0.3417 0.1026 0.0813 0.0601 0.0921 0.0814 0.1076 0.4649 0.4353

RF MAAPE 0.2907 0.3086 0.1033 0.0782 0.0615 0.0923 0.0788 0.1068 0.4461 0.4281
MASE 0.1892 0.1927 0.0459 0.0248 0.2324 0.2978 0.2037 0.2617 0.3935 0.3673
sMAPE 0.5551 0.6310 0.1668 0.2151 0.4762 0.5625 0.1771 0.2652 0.9009 0.8736

LSTM MAAPE 0.3672 0.4038 0.1373 0.1597 0.3281 0.3675 0.1488 0.2204 0.4959 0.4842
MASE 0.3111 0.3557 0.0849 0.0885 1.8338 2.0560 0.4068 0.5719 0.6320 0.6127
sMAPE 0.5557 0.6299 0.1667 0.2138 0.4761 0.5515 0.1770 0.3246 0.9017 0.8734

Bi-LSTM MAAPE 0.3682 0.4048 0.1373 0.1590 0.3280 0.3623 0.1487 0.2577 0.4963 0.4843
MASE 0.3112 0.3558 0.0849 0.0883 1.8338 2.0253 0.4067 0.7376 0.6321 0.6124
sMAPE 0.5555 0.6314 0.1668 0.2150 0.4738 0.5619 0.1771 0.2639 0.9010 0.8732

CNN MAAPE 0.3680 0.4046 0.1374 0.1596 0.3266 0.3672 0.1488 0.2191 0.4958 0.4845
MASE 0.3113 0.3562 0.0849 0.0883 1.8235 2.0542 0.4069 0.5678 0.6322 0.6124
sMAPE 0.3510 0.4262 0.1021 0.0749 0.0588 0.0825 0.0825 0.1216 0.5154 0.6125

ESN MAAPE 0.3084 0.3657 0.1030 0.0719 0.0601 0.0830 0.0801 0.1206 0.4562 0.5251
MASE 0.1897 0.2240 0.0474 0.0256 0.2322 0.2954 0.2054 0.2714 0.4239 0.5068

methods. As a future work, we intend to conduct exten-
sive simulations using a larger number of IoT datasets and
lightweight multiple time-series prediction models as well as
investigating the training/validation performance of additional
rolling window-based cross-validation techniques.

ACKNOWLEDGMENT

This work has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant
agreement No 957337 (project MARVEL) and the Operational
Program Competitiveness, Entrepreneurship and Innovation,
under the call RESEARCH–CREATE–INNOVATE (project
code: T1EDK-00070).

REFERENCES

[1] L. D. Xu, W. He, and S. Li, “Internet of things in industries: A survey,”
IEEE Transactions on Industrial Informatics, vol. 10, no. 4, pp. 2233–
2243, Nov. 2014.

[2] J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3–9, Feb. 2014.

[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, “Internet
of things for smart cities,” IEEE Internet of Things Journal, vol. 1, no. 1,
pp. 22–32, Feb. 2014.

[4] Y. Mehmood, F. Ahmad, I. Yaqoob, A. Adnane, M. Imran, and
S. Guizani, “Internet-of-things-based smart cities: Recent advances and
challenges,” IEEE Communications Magazine, vol. 55, no. 9, pp. 16–24,
2017.

[5] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet of
things for smart home: Challenges and solutions,” Journal of Cleaner
Production, vol. 140, pp. 1454–1464, 2017.

[6] S. D. T. Kelly, N. K. Suryadevara, and S. C. Mukhopadhyay, “Towards
the implementation of IoT for environmental condition monitoring in
homes,” IEEE Sensors Journal, vol. 13, no. 10, pp. 3846–3853, Oct.
2013.

[7] J. Wei, “How wearables intersect with the cloud and the internet of
things : Considerations for the developers of wearables.” IEEE Consumer
Electronics Magazine, vol. 3, no. 3, pp. 53–56, July 2014.

[8] S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Marrocco,
“RFID technology for IoT-based personal healthcare in smart spaces,”
IEEE Internet of Things Journal, vol. 1, no. 2, pp. 144–152, April 2014.

[9] F. Shrouf and G. Miragliotta, “Energy management based on internet
of things: practices and framework for adoption in production manage-
ment,” Journal of Cleaner Production, vol. 100, pp. 235–246, 2015.

[10] D. Kwon, M. R. Hodkiewicz, J. Fan, T. Shibutani, and M. G. Pecht,
“IoT-based prognostics and systems health management for industrial
applications,” IEEE Access, vol. 4, pp. 3659–3670, 2016.

[11] W. He, G. Yan, and L. D. Xu, “Developing vehicular data cloud services
in the IoT environment,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587–1595, May 2014.

[12] M. A. Razzaque, M. Milojevic-Jevric, A. Palade, and S. Clarke, “Middle-
ware for internet of things: A survey,” IEEE Internet of Things Journal,
vol. 3, no. 1, pp. 70–95, Feb. 2016.

[13] I. Lee and K. Lee, “The internet of things (IoT): Applications, invest-
ments, and challenges for enterprises,” Business Horizons, vol. 58, no. 4,
pp. 431–440, 2015.

[14] Q. Shi, J. Yin, J. Cai, A. Cichocki, T. Yokota, L. Chen, M. Yuan,
and J. Zeng, “Block Hankel tensor ARIMA for multiple short time
series forecasting,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 34, no. 04, pp. 5758–5766, April 2020.

[15] K. Bandara, C. Bergmeir, and H. Hewamalage, “LSTM-MSNet: Lever-
aging forecasts on sets of related time series with multiple seasonal
patterns,” IEEE Transactions on Neural Networks and Learning Systems,
vol. 32, no. 4, pp. 1586–1599, 2021.

[16] G. Dudek, “Short-term load forecasting using random forests,” Advances
in Intelligent Systems and Computing, vol. 323, pp. 821–828, 2015.

[17] R. Godahewa, C. Bergmeir, G. I. Webb, R. J. Hyndman, and P. Montero-
Manso, “Monash time series forecasting archive,” arXiv:2105.06643,
2021.

[18] Y. Bao, T. Xiong, and Z. Hu, “Multi-step-ahead time series prediction
using multiple-output support vector regression,” Neurocomputing, vol.
129, pp. 482–493, 2014.

[19] K. Benidis, S. S. Rangapuram, V. Flunkert, B. Wang, D. C. Maddix,
A. C. Türkmen, J. Gasthaus, M. Bohlke-Schneider, D. Salinas, L. Stella,
L. Callot, and T. Januschowski, “Neural forecasting: Introduction and
literature overview,” CoRR, vol. abs/2004.10240, 2020.

[20] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The performance
of LSTM and BiLSTM in forecasting time series,” in 2019 IEEE
International Conference on Big Data (Big Data), 2019, pp. 3285–3292.

[21] C. Gallicchio, A. Micheli, and L. Pedrelli, “Design of deep echo state
networks,” Neural Networks, vol. 108, pp. 33–47, 2018.

[22] S. Kim and H. Kim, “A new metric of absolute percentage error for
intermittent demand forecasts,” International Journal of Forecasting,
vol. 32, no. 3, pp. 669–679, 2016.

1120

