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Abstract—Sound Event Detection (SED) pipelines identify
and classify relevant events in audio streams. With typical
applications in the smart city domain (e.g., crowd counting,
alarm triggering), SED is an asset for municipalities and law
enforcement agencies. Given the large size of the areas to
be monitored and the amount of data generated by the IoT
sensors, large models running on centralised servers are not
suitable for real-time applications. Conversely, performing SED
directly on pervasive embedded devices is very attractive in terms
of energy consumption, bandwidth requirements and privacy
preservation. In a previous manuscript, we proposed scalable
backbones from the PhiNets architectures’ family for real-time
sound event detection on microcontrollers. In this paper, we
extend our analysis investigating how PhiNets’ scaling parameters
affect the model performance in the SED task while searching
for the best configuration given the computational constraints.
Experimental analysis on UrbanSound8K shows that while only
the total number of parameters matters when training the model
from scratch (i.e., it is independent of the scaling parameter con-
figuration), knowledge distillation is more effective with specific
scaling configurations.

Index Terms—Sound event detection, Neural Networks,
PhiNets, tinyML

I. INTRODUCTION

Sound Event Detection (SED) is an emerging task with
many applications in fields like industries and intelligent
cities [1], where multimedia analytics gained significant inter-
est in the recent past [2], [3]. SED can benefit from the avail-
ability of pervasive embedded devices capable of continuously
monitoring the environment looking for relevant events [1].
Driven by the release of novel datasets and challenges [4]–[7],
recent advancements in the field have considerably improved
the effectiveness and accuracy of SED solutions. However, this
has been achieved using highly demanding models in terms
of memory footprint and computational complexity [8]–[13].
Consequently, these systems are not suitable for applications
requiring pervasive low-power, low-cost sensors. Nonetheless,
it has been shown how strategies such as knowledge distillation
(KD) [14], network pruning [15] or weight quantization [16],
[17] can considerably reduce the size of the models, making
them suitable to run on microcontroller units (MCU) [18].
Unfortunately, these techniques are typically tailored to the

This work was partially funded by the EU H2020 project MARVEL (project
number: 957337).

specific device and require an expensive process to adapt
the original neural network to different processing units.
Therefore, efforts have been recently focused on developing
architectures specifically designed to operate on low-end de-
vices [19].

Following this line of research, in a previous work [20]
we applied PhiNets [21] to the SED task either using spec-
trograms or raw waveforms. The proposed model achieved
state-of-the-art performance on the UrbanSound8k dataset [4]
for spectrogram classification while using an extremely low
number of parameters. The focus of this previous paper was
on minimising as much as possible the memory footprint of
the models, in order to make it fit on MCUs, while limiting the
performance deterioration with respect to the state-of-the-art.
Conversely, in this paper, we provide an experimental analysis
on how the PhiNet’s width-scaling parameters (namely the
width multiplier α and the base expansion factor t0 from the
original paper [21]) impact the final classification performance
by defining models of different sizes and architectures. In par-
ticular, we observed that different configurations of the scaling
parameters leading to the same amount of model parameters
give very similar performance. On the other hand, applying
KD from a larger teacher model boosts the performance but
only when large t0 values are employed.

The paper is organised as follows. Section II describes the
PhiNet backbones and their scaling parameters. Section III
provides details about the experimental analysis whose results
are reported and discussed in Section IV. Finally, Section V
concludes the paper with final remarks.

II. SCALABLE BACKBONES: PHINETS

This work employs the PhiNets networks [21]: a family of
modular scalable backbones that can be easily tuned using
few hyperparamters to match the memory and computational
resources available on different embedded platforms. The main
convolutional block used in the architecture is a modified
version of the inverted residual block used in MobileNetV2
[22] and MobileNetV3 [23] architectures. This block is com-
posed of a sequence of three operations, namely: a pointwise
expansion convolution, a depthwise convolution, a squeeze-
and-excitation block [24]. These three operations are followed
by a second pointwise projection convolution. The structure
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Fig. 1. An overview of the PhiNets convolutional block structure. First, the number of channels is increased with a pointwise convolution, followed by a
depthwise convolution (green) and SE block (blue). Finally, a second pointwise convolution (yellow) connects to the low dimensionality bottleneck block
(purple). B is the number of blocks in the network, and N is the current block index. α, β and t0 are the block hyperparameters.

of the basic PhiNet convolutional block is shown in Fig.
1. The final model is obtained stacking B of these blocks
(we use B = 5 for all the experiments in this work). Three
hyperparameters can be used to modify the configuration of
the convolutional blocks:

• Width multiplier α, which linearly adjusts the filter
count of all convolutions in the network. As a result, it
scales the operation count of the whole model. The num-
ber of operations in the network depends quadratically
on this parameter, as shown in Fig. 2; This quadratic
dependence can be verified experimentally with most
deep learning platforms. Moreover, it can be trivially
derived considering that the operation count for one
convolutional block is:

MMAC(ci, co, α, n) = cicoα
2n2 (1)

where ci, co, α and n are the input channels, output
channels, width multiplier and input size respectively.

Fig. 2. Effects of varying the hyperparameter α on network operations ,
expressed in Multiply and Accumulate, (MACC).

• Base expansion factor t0, which affects the filter count in
the expansion and depthwise convolutions inner blocks.
This parameters can be used to optimise the RAM re-
quired by the network, which can be approximated as
R ≈ C · t0 with C denoting the RAM needed for the
network with t0 = 1. The effects of this parameter on
the network working memory is shown in Fig. 3;

Fig. 3. Effects of varying the hyperparameter t0 on the working memory
(WM) or RAM required to store the intermediate network tensors.

• Shape parameter β, that defines the filter count of the
later blocks in the networks. These blocks are those the
ones requiring the largest number of parameters, which
can be approximated as #Params ≈ C · 12 (1+β), where
C is number of parameters of the network with β = 1.
The effects of this parameter on network parameters are
shown in Fig 4.

The computational cost and memory footprint of the model
can be easily adjusted to fit the constraints of the processing
unit by varying these three hyper-parameters. Note that differ-
ent configurations of the hyper-parameters may lead to highly
similar parameter counts but rather different architectures.
In this work, we want to investigate the effectiveness of
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Fig. 4. Effects of varying the hyperparameter β on the parameter memory
(PM) or FLASH required to store the network weights.

these different configurations. The sequence of blocks is then
followed by a fully connected classification layer with softmax
activation in order to obtain a 10 class classification output.

III. EXPERIMENTAL ANALYSIS

This work carries out an empirical study to highlight the
effects of two width scaling parameters (α and t0) on sound
event detection performance. β will be kept at the default value
(β = 1), as all networks tested require so few parameters that
even the smallest MCUs can store them with a considerable
margin. We vary α considering [0.20, 0.35, 0.50] possible val-
ues and t0 in [2, 4, 6]. Note that in this way, we cover different
architectures with a very similar number of parameters. Given
the small sizes of the resulting PhiNet models, besides training
them from scratch, we also investigate the use of KD from a
larger plain-conv2d model, using both soft and one-hot labels.

A. Dataset

We perform our analysis on the UrbanSound8K dataset [4],
a collection of 8732 samples of 4 second long typical urban
sound events, equally distributed among 10 different classes
(air conditioner, car horn, children playing, dog bark, drilling,
engine idling, gunshot, jackhammer, siren, and street music).
We re-sampled each event at 16 kHz. Moreover, we augmented
the dataset with pitch shifting with tone steps -2, -1, 1, 2, time-
stretching with factors 0.81 and 1.07, and additional Gaussian
noise. The task is single-label classification, and the perfor-
mance is hence evaluated in terms of classification accuracy.
We used the standard 10-fold benchmarking procedure for this
dataset.

B. Implementation Details

The model input is 2D and consists of 40 mel-spectrum
features computed on the 4 s segments using a 128ms sample
window with a hop-length 42ms. Overall 120 frames are
computed for each sound event. We trained all models for

200 epochs, with a 1 × 10−3 learning rate, 1 × 10−2 weight
decay and 0.07 dropout rate in the convolutional blocks.

We used a plain conv-2d model consisting of 4 conv-2d
layers with 16, 32, 64, 64 filters each for the KD-based
training. After the convolutional layers, we used a softmax
classifier. The loss was a combination of the cross-entropy
computed on the teacher’s soft labels and the hard labels given
by the ground-truth, with a ratio of 2/3-1/3. The temperature
parameter was set to 2. Both hyper-parameters were empiri-
cally optimised.

IV. RESULTS

Table I reports the sound event detection accuracy obtained
training the models from scratch, as well as using knowledge
distillation, considering different configurations. The table also
reports the parameter count for each configuration.

TABLE I
ACCURACY ON URBANSOUND8K VARYING THE α AND t0 SCALING

PARAMETERS, WITH AND WIHTOUT KD. THE TABLE REPORTS ALSO THE
MODEL PARAMETER COUNT.

α t0 Acc Acc-KD # Parameters
0.20 2 64.87 49.68 4,779
0.35 2 64.64 64.82 12,479
0.50 2 63.90 67.61 24,507
0.20 4 65.85 59.58 8,893
0.35 4 71.80 67.14 23,797
0.50 4 72.25 70.15 47,349
0.20 6 66.05 70.95 13,007
0.35 6 68.02 71.05 35,115
0.50 6 70.39 71.20 70,191

While the performance of the models trained from scratch
decays rather linearly with the number of parameters (as
shown in Fig. 5), the specific configuration of the hyper-
parameters α and t0 does not seem to have a direct and evident
impact on the performance (see Fig 7, 6). Overall, this was
expected as the PhiNet architectures are designed to scale effi-
ciently in the MCU range without significantly compromising
the network’s performance. However, it is worth noting that, in
some cases, using larger values of t0 is preferable with respect
to α given a target parameter count (compare for example the
two models (0.5;2) and (0.35;34)). This is true also considering
that both α and t0 have a quadratic dependency on inference
time. This could be related to the fact that larger convolutional
blocks can better represent the information, easing the learning
task. Finally, note that the best accuracy (72.25%) is achieved
using a medium-size architecture (47K parameters obtained
with α = 0.5 and t0 = 4). PhiNets are actually designed to
be efficient in the MCU range. Therefore, they tend to overfit
easily when the model size increases. This issue is further
accentuated by the relatively small size of the dataset used in
our experiments.

Conversely, models trained via knowledge distillation do
not show the same linear performance decay that, instead,
drastically decreases for small architectures. Nevertheless, the
experimental analysis confirms that KD improves the per-
formance of some configurations. However, this occurs only
when the expansion factor is sufficiently high (t0 = 6 in
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Fig. 5. Event detection accuracy as a function of the overall network
parameter count.

our experiments). In all the other cases, using KD leads to
performance deterioration, which in some cases are extremely
evident. Our hypothesis is that architectures with high values
of t0 tend to resemble the conv-2d nature of the teacher, thus
helping the convergence of the model.

Overall, the scaling principles of PhiNets guarantee a com-
petitive classification accuracy without requiring KD.

Fig. 6. Classification accuracy as a function of t0. Note how a higher value for
the base expansion factor favors networks trained using knowledge distillation.

To complete our analysis, in Table IV we compare the best
performance achieved with PhiNets with the state-of-the-art
models AudioCLIP [8] and with the plain conv-2d model used
as teacher. Note that the very high performance of AudioCLIP
is achieved with 60M parameters, which are definitely not
suitable for low-end devices. In addition AudioCLIP has
been trained on a much larger amount of data, while our
models are trained direcltly on UrbanSound8K. Nevertheless,
the proposed PhiNet architecture can reach a 72.2% accuracy
with less the 50K parameters. It is interesting to observe that

Fig. 7. Testing accuracy as a function of α. Again, we observe that higher
values for the width multiplier is preferable when training using knowledge
distillation.

the plain conv-2d teacher considerably outperforms the PhiNet
model with a similar parameter count (see the last row of
Table I). This is mainly due to the fact that the teacher network
composed of 2D convolutions requires largely more operations
to run with respect to the largest PhiNet tested (90M vs 10M).

TABLE II
MODEL PERFORMANCE WITH RESPECT TO STATE-OF-THE-ART PLATFORM.

Model name Test acc [%] Parameter count
AudioCLIP [8] 90.01 60M

Teacher (Conv-2d) 81.15 66K
PhiNets 72.25 47K

V. CONCLUSIONS

In this paper, we investigated the impact of two width-
scaling parameters of PhiNets towards identifying their effects
on the performance of urban sound detection to simplify the
model design given the available memory and computational
resources. Experiments on UrbanSound8K show that while α
and t0 are interchangeable when the model is trained from
scratch, and only the number of parameters matters, large
values of t0 are preferable if KD from a pre-trained teacher
model can be applied.

In future work, we aim at applying the same KD approach
on a video task to validate the results against a different
sensing source. Moreover, we plan to compare this approach
with adaptive pruning strategies for network compression.
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