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Abstract—Audio captioning aims at using language to describe
the content of an audio clip. Existing audio captioning systems
are generally based on an encoder-decoder architecture, in which
acoustic information is extracted by an audio encoder and then
a language decoder is used to generate the captions. Training an
audio captioning system often encounters the problem of data
scarcity. Transferring knowledge from pre-trained audio models
such as Pre-trained Audio Neural Networks (PANNs) have recently
emerged as a useful method to mitigate this issue. However, there
is less attention on exploiting pre-trained language models for
the decoder, compared with the encoder. BERT is a pre-trained
language model that has been extensively used in natural language
processing tasks. Nevertheless, the potential of using BERT as the
language decoder for audio captioning has not been investigated.
In this study, we demonstrate the efficacy of the pre-trained BERT
model for audio captioning. Specifically, we apply PANNs as the
encoder and initialize the decoder from the publicly available
pre-trained BERT models. We conduct an empirical study on the
use of these BERT models for the decoder in the audio captioning
model. Our models achieve competitive results with the existing
audio captioning methods on the AudioCaps dataset.

Index Terms—audio captioning, language models, BERT, Pre-
trained Audio Neural Networks (PANNs), deep learning

I. INTRODUCTION

Audio captioning is the task of generating a text description
for an audio clip, which has various potential applications.
For example, audio captioning can be used to generate
text descriptions of sounds to help the hearing impaired in
understanding an acoustic environment. Audio captioning has
attracted increasing interest in the fields of acoustic signal
processing and natural language processing (NLP).

Existing audio captioning systems are mostly based on
an encoder-decoder architecture [1]–[5], in which acoustic
information is extracted by an audio encoder, and then a
language decoder is used to generate text descriptions. Training
of an audio captioning system often encounters the problem
of data scarcity. AudioCaps [6] is the largest public dataset
for audio captioning research, however, it only has about 50k
audio clips with one reference caption. Compared with the
popular image captioning datasets such as MS COCO (∼123k
images) [7] and Conceptual Captions (∼3.3M images) [8], the
scale of the existing audio captioning dataset is much smaller.
This can limit the performance of an audio captioning model
in generating consistent natural language description.

To address the data scarcity issue of audio captioning,
transferring knowledge from pre-trained audio models has been

widely investigated. Xu et al. [9] propose an approach that uses
transfer learning to exploit local and global information from
audio tagging and acoustic scene classification, respectively.
Pre-trained Audio Neural Networks (PANNs) [10] are the
models pre-trained on AudioSet [11], which have achieved
great success as the encoder [4], [5], [12]–[14] in the audio
captioning system. Nevertheless, compared with the audio
encoder, there is less attention on exploiting pre-trained NLP
models for the language decoder in the audio captioning model.

Koizumi et al. [15] used a frozen Generative Pre-Training
model (GPT-2) [16] with the retrieval of similar captions in the
dataset. This method generates accurate results using ground-
truth similar captions, whereas using the retrieved captions
leads to degraded performance. Gontier et al. [17] proposed an
approach for audio captioning by fine-tuning Bidirectional and
Auto-Regressive Transformers (BART) [18] with AudioSet [11]
tags as text conditions in the BART encoder, which achieved
the state-of-the-art result on AudioCaps [6]. However, the
performance of this method is highly dependent on the audio
tagging model. In addition, the adaptation of BART (12 layers
in both the encoder and decoder) results in a large number of
training parameters (∼400 million).

BERT [19], which stands for Bidirectional Encoder Repre-
sentations from Transformers, is an NLP model pre-trained
on large-scale text datasets, which has been extensively used
as strong baselines on many natural language understanding
(NLU) benchmarks [20]. Recently, BERT has been exploited
as the decoder in sequence-to-sequence models and has
achieved state-of-the-art results on several Natural Language
Generation (NLG) tasks such as Machine Translation and Text
Summarization [21]. Weck et al. [22] used BERT embeddings
for the decoder in the audio captioning model. However, using
only word embedding layers may not fully utilize the linguistic
knowledge of the pre-trained BERT model. In summary, the
potential of using BERT for audio captioning has not been
well studied in the literature.

In this paper, we investigate the exploitation of pre-trained
BERT models for the decoder in the audio captioning model.
We propose an encoder-decoder model in which PANNs are
used as the audio encoder, and the pre-trained BERT is
used in the decoder. To bridge the language decoder and the
audio encoder, we add cross-attention layers with randomly
initialized weights in the decoder, but retain the pre-trained
weights from BERT models for other layers in the decoder.
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TABLE I
CONFIGURATIONS OF BERT MODELS USED IN THIS WORK.

Type Model Layer Head Hidden

Compact BERT
BERT tiny 2 2 128
BERT mini 4 4 256

BERT medium 6 8 512
BERT BERT base 12 12 768

RoBERTa RoBERTa base 12 12 768

In this way, the knowledge gained from the pre-trained BERT
model can be transferred to the audio captioning decoder. We
conduct an empirical study for the utility of various pre-trained
BERT model such as BERT [19], Compact BERT [23] and
RoBERTa [24] on the AudioCaps dataset. The experimental
results demonstrate the efficacy of the pre-trained BERT models
for audio captioning. Our proposed models achieve competitive
results, as compared with existing audio captioning methods.

The remainder of this paper is organized as follows. The next
section introduces our proposed method. Section III presents
experimental setup. Section IV shows experimental results on
the AudioCaps datasets. Conclusions are given in Section V.

II. PROPOSED METHOD

Our proposed audio captioning model is composed of PANNs
based encoder and BERT based decoder. In this section, we
first introduce the pre-trained BERT model, as depicted in
Fig. 1. Then, we describe the audio encoder of our model,
PANNs. Lastly, we discuss the BERT based language decoder
in the audio captioning model. Fig. 2 visualizes the overall
architecture of our proposed model.

A. Pre-trained BERT models

BERT [19] is based on a number of Transformer encoder
blocks, where each block contains a multi-head bidirectional
self-attention layer followed by a feed-forward layer. Each
encoder block is equipped with residual connections and layer
normalization. BERT is pre-trained on BooksCorpus [25] and
English Wikipedia using Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP) tasks. MLM aims to
predict the masked tokens in the input sentence, while NSP
aims to predict whether the input two sentences are paired. Pre-
training on large datasets using these two tasks offers BERT the
capabilities to capture linguistic information such as syntactic
and semantic content.

In this work, we investigate three types of publicly available
pre-trained BERT models: BERT [19], Compact BERT [23],
and RoBERTa [24]. Compact BERT is a compressed version
of BERT by knowledge distillation, with a smaller architecture.
RoBERTa is built on BERT and uses different pre-training
strategies, which shows better performance than BERT. The
details of these BERT models are described in Table I.

B. PANNs encoder

PANNs [10] demonstrated powerful capabilities in extracting
features of audio signals for audio recognition tasks such as
audio tagging. In this work, we use the CNN10 model in
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Fig. 1. The structure of BERT, where Ne is the number of encoder blocks.

PANNs as the audio encoder. The CNN10 consists of four
convolutional blocks, each with two convolutional layers with
a kernel size of 3 × 3. Batch normalization and ReLU are
used after each convolutional layer. The number of channels
per convolutional block is 64, 128, 256 and 512. An average
pooling layer with kernel size 2 × 2 is applied for down-
sampling. Global average pooling is applied along the frequency
axis after the last convolutional block, followed by two fully-
connected layers to align the dimension of the output with
the hidden dimension D of the decoder. The CNN10 encoder
takes the log mel-spectrogram of an audio clip as the input
and outputs the features I ∈ RT×D, where T and D represent
the number of time frames and the dimension of the spectral
feature at each time frame, respectively.

C. BERT decoder

To use BERT as the language decoder in the audio captioning
model, we make two adjustments. First, we modify the
bidirectional self-attention used in the original BERT model,
which considers both past and future context, to unidirectional
self-attention by exploiting only the past contexts. This is
because the bidirectional structure does not fit the language
decoder. Second, the cross-attention layers are added after
the self-attention layers to bridge the audio encoder and the
language decoder. The cross-attention layer has two inputs, the
encoder output I ∈ RT×D and the current state of the decoder
H ∈ RN×D, where N is the number of tokens already decoded,
and D is the decoder hidden dimension. The cross-attention is
calculated as:

CrossAttn(H, I) = Attn(H, I, I), (1)

Attn(Q,K, V ) = Softmax

(
(W qQ)(W kK)T√

d

)
W vV, (2)

where W q,W k,W v are three learnable matrices and d is a
scaling factor. After that, we apply the add & norm operation,
which contains a residual connection and layer normalization
and can be written as:

LayerNorm(CrossAttn(H, I) +H). (3)

The cross-attention layers are added with randomly initialized
weights, while the other layers retain the pre-trained weights
from BERT to transfer the NLP knowledge from BERT.
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Fig. 2. The architecture of the proposed model using PANNs (CNN10)
encoder and BERT decoder. The green, white, and orange blocks represent
that the weights are initialized with parameters learned from PANNs, randomly
initialized, and initialized from BERT, respectively. Here, Nd is the number
of BERT decoder blocks.

III. EXPERIMENTS

A. Dataset

AudioCaps [6] is the largest public audio captioning dataset
with around 50k audio clips sourced from AudioSet [6].
AudioCaps is divided into three splits: training, validation and
test. Each audio clip in the training set contains one human-
annotated caption, while each clip in the validation and test set
has five captions. Since some audio clips are now missing from
YouTube, all our experiments are conducted on the version we
downloaded, which contains 49 274 audio clips in the training
set, 494 clips in the validation set, 957 clips in the test set.

B. Audio processing

We use the original sampling rate of 32 000Hz to load
audio data and the mel-spectrogram as the input to our
model. Specifically, a 64-dimensional log mel-spectrogram
is calculated using the short-time Fourier transform with a
Hanning window of 1024 samples, and a hop size of 512
samples. SpecAugment [26] is used for data augmentation.

C. Text processing

We converted all captions in the AudioCaps dataset to lower
case and removed punctuation. Two special tokens “<soc>”
and “<eoc>” are added to the start and end of each caption.
We tokenize our text corpus using the WordPiece [27] to match
the BERT pre-trained vocabulary (∼30k tokens).

D. Training procedure

We trained the proposed model using Adam [28] optimizer
with a batch size of 32. Warm-up is used in the first 5 epochs
to increase the learning rate to the initial learning rate. The
learning rate is then decreased to 1/10 of itself every 10 epochs.
Dropout with a rate of 0.2 is applied in the BERT decoder
to mitigate the over-fitting problem. To stabilize the training,
we share the weights between the input embedding layer and
the output token classification layer in the BERT decoder.
We train the model for 30 epochs on the AudioCaps training
set, with an initial learning rate of 5× 10−5 for BERT base
and RoBERTa base (as introduced in Table I) and 5× 10−4

for other BERT configurations. Validation is carried out after
every training epoch, and we save the model with the best
performance on the validation set. For each experiment, we
repeat three times and report their average performance.

E. Evaluation

During the inference stage, the mel-spectrogram along with
the token “<soc>” are fed into the encoder and decoder
separately to generate the first token. Then, the following
tokens are predicted based on the previously generated tokens
until the token “<eoc>” or the maximum length (50 tokens
in our experiments) is reached. The beam search strategy [29]
with a beam width up to 5 is used to generate captions.

We evaluate the performance of the proposed model using
the same metrics adopted in DCASE 2021 Challenge on Task 6:
“Automated Audio Captioning”, including machine translation
metrics: BLEUn [30], METEOR [31], ROUGEL [32] and
captioning metrics: CIDEr [33], SPICE [34], SPIDEr [35].
BLEUn measures the precision of n-gram inside the generated
text. METEOR is a harmonic mean of precision and recall based
on word-to-word matches. ROUGEL calculates F-measures
based on the longest common sub-sequence. CIDEr considers
the cosine similarity between term frequency inverse document
frequency (TF-IDF) of the n-gram. SPICE extracts captions
into scenes graphs and calculates F-score based on them. SPICE
score ensures captions are semantically faithful to the audio
clip, while the CIDEr score ensures captions are syntactically
fluent. SPIDEr is the mean score of CIDEr and SPICE.

IV. RESULTS

A. Comparison with baseline methods

We compare our proposed approach with five baseline
methods, namely, the TopDown-AlignedAtt [6] model, the
CNN10-AT model [9] which uses pre-trained Audio Tagging
model as the encoder, the Audio Captioning Transformer (ACT)
[2], which is the first convolution-free architecture, the model
in [15] that uses frozen GPT-2 and audio-based similar caption
retrieval, and finally the current state-of-the-art model [17] on
AudioCaps based on BART and AudioSet tags.

We report the performance of the first four baseline methods
in the upper part of Table II. It can be observed that the final
method [17] cannot generalize well to other datasets. Since its
performance improvement depends on the AudioSet tags used
as word hinters in caption annotation stage of AudioCaps, so
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TABLE II
MODEL PERFORMANCE ON THE AUDIOCAPS DATASET. UPPER: PERFORMANCE OF EXISTING AUDIO CAPTIONING METHODS (BASELINE). BOTTOM:

PERFORMANCE OF OUR PROPOSED PANNS (CNN10) ENCODER BERT DECODER MODEL. THE DISPLAYED SCORES ARE MEANS AND STANDARD
DEVIATIONS OVER THREE EXPERIMENTS. THE HIGHEST VALUE FOR EACH METRIC IS SHOWN IN BOLD.

Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr
TopDown-AlignedAtt [6] 61.4 44.6 31.7 21.9 45.0 20.3 59.3 14.4 36.9

CNN10-AT [9] 65.5 47.6 33.5 23.1 46.7 22.9 66.0 16.8 41.4
ACT small [2] 64.3 48.3 35.2 24.9 46.9 21.8 66.9 16.0 41.5

ACT medium [2] 65.3 49.5 36.3 25.9 47.1 22.2 66.3 16.3 41.3
ACT large [2] 64.7 48.8 35.6 25.2 46.8 22.2 67.9 16.0 42.0

GPT-2 + similar captions [15] 63.8 45.8 31.8 20.4 43.4 19.9 50.3 13.9 32.1
CNN10 + BERT tiny 66.0 (0.7) 49.1 (0.3) 35.2 (0.3) 24.5 (0.2) 47.0 (0.5) 22.4 (0.2) 63.1 (0.9) 16.2 (0.3) 39.6 (0.5)
CNN10 + BERT mini 67.1 (0.9) 49.8 (0.6) 35.8 (0.3) 25.1 (0.1) 48.0 (0.7) 23.2 (0.4) 66.7 (0.6) 17.2 (0.1) 41.9 (0.3)

CNN10 + BERT medium 67.1 (0.3) 50.1 (0.2) 36.3 (0.2) 25.5 (0.2) 47.9 (0.4) 23.1 (0.4) 65.4 (1.2) 16.8 (0.5) 41.1 (0.6)
CNN10 + BERT base 66.0 (0.4) 48.6 (0.3) 34.4 (0.4) 23.7 (0.5) 47.0 (0.2) 22.9 (0.1) 63.4 (1.3) 16.5 (0.1) 40.0 (0.6)

CNN10 + RoBERTa base 66.1 (0.3) 48.6 (0.2) 34.4 (0.2) 23.7 (0.3) 46.9 (0.3) 22.3 (0.1) 63.7 (1.6) 16.1 (0.2) 39.9 (0.8)

TABLE III
THE PERFORMANCE OF THE STATE-OF-THE-ART SYSTEM (BART + AUDIOSET TAGS) AND HUMAN-GENERATED CAPTIONS (HUMAN).

Model BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr
BART + AudioSet tags [17] 69.9 (0.5) 52.3 (0.7) 38.0 (0.8) 26.6 (0.9) 49.3 (0.4) 24.1 (0.3) 75.3 (0.9) 17.6 (0.3) 46.5 (0.6)

Human [6] 65.4 48.9 37.3 29.1 49.6 28.8 91.3 21.6 56.5

TABLE IV
PERFORMANCE METRICS FOR THE ABLATION STUDY (RANDOMLY INITIALIZED BERT DECODER). THE VALUES IN THE METRICS WHERE RANDOMLY

INITIALIZED BERT OUTPERFORMS THE PRE-TRAINED BERT ARE IN BOLD.

Decoder (Random) BLEU1 BLEU2 BLEU3 BLEU4 ROUGEL METEOR CIDEr SPICE SPIDEr
BERT tiny 65.8 (0.7) 48.9 (0.2) 35.0 (0.4) 24.2 (0.4) 47.0 (0.3) 22.1 (0.2) 62.2 (1.2) 16.3 (0.1) 39.2 (0.7)
BERT mini 66.4 (0.6) 49.2 (0.6) 35.5 (0.5) 25.2 (0.5) 47.8 (0.3) 23.2 (0.2) 65.3 (0.7) 16.8 (0.2) 41.0 (0.3)

BERT medium 66.7 (0.5) 49.1 (0.6) 35.4 (0.6) 24.7 (0.6) 47.5 (0.3) 23.2 (0.3) 65.4 (1.0) 16.7 (0.1) 41.0 (0.5)
BERT base 64.0 (0.2) 46.5 (0.3) 32.4 (0.3) 21.8 (0.1) 45.9 (0.3) 22.0 (0.3) 61.0 (1.1) 16.0 (0.0) 38.5 (0.6)

RoBERTa base 64.9 (0.5) 47.6 (0.7) 33.5 (0.6) 22.9 (0.4) 46.1 (0.2) 22.0 (0.1) 62.0 (1.3) 16.2 (0.4) 39.1 (0.6)

we separately report its performance in Table III for reference.
In addition, the performance of human-generated captions
described in [6] is given in Table III.

B. Efficacy of BERT decoder

We report the performance of our proposed model in the
bottom part of Table II. Experimental results demonstrate that
Compact BERT achieves the best result, especially BERT mini
and BERT medium. We found that although BERT and
RoBERTa are more powerful pre-trained NLP models, they
do not outperform Compact BERT. We empirically found that
the degradation of BERT and RoBERTa is due to their large
architecture, which potentially leads to over-fitting on this
task. Compared with the baseline models, our models perform
better on the machine translation related metrics. Specifically,
BERT mini achieved the highest scores in BLEU1, METEOR
and CIDEr, while BERT medium performs the best in terms of
BLEU1, BLEU2, BLEU3, and ROUGEL metrics. This indicates
that our models have a better ability in generating accurate
words and fluent language descriptions than baseline models.
In summary, our models show competitive performance as
compared to the existing audio captioning models.

To further show the efficacy of the BERT decoders for audio
captioning, we conducted an ablation study with randomly
initialized weights of the BERT decoder. Note, that there
is no structural difference between a BERT decoder and a

standard transformer decoder. Experimental results are reported
in Table IV, as for all BERT architectures, the pre-trained BERT
decoders outperform the randomly initialized BERT decoders
on most metrics. This shows that the knowledge from the
pre-trained BERT model is helpful for audio captioning.

V. CONCLUSION

We have presented an encoder-decoder based audio caption-
ing model by using pre-trained BERT models as language
decoder and PANNs as the audio encoder. To bridge the
language decoder and the audio encoder, the cross-attention
layers are added with randomly initialized weights in the BERT
decoder, while the other layers retain the pre-trained weights
from BERT models. We conducted an empirical study on the
utility of the pre-trained BERT models with a different scale on
the AudioCaps dataset. The experimental results demonstrate
the efficacy of the BERT model for audio captioning. Our
proposed models show competitive results as compared to the
existing audio captioning methods. In future work, we will
investigate the usage of NLP models for audio captioning from
other aspects, such as text data augmentation.
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