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Abstract— Neural network-based Text–to–Speech has 

significantly improved the quality of synthesized speech. 

Prominent methods (e.g., Tacotron2, FastSpeech, FastPitch) 

usually generate Mel-spectrogram from text and then synthesize 

speech using vocoder (e.g., WaveNet, WaveGlow, HiFiGAN). 

Compared with traditional parametric approaches (e.g., 

STRAIGHT and WORLD), neural vocoder based end-to-end 

models suffer from slow inference speed, and the synthesized 

speech is usually not robust and lack of controllability. In this 

work, we propose a novel updated vocoder, which is a simple 

signal model to train and easy to generate waveforms. We use 

the Gaussian-Markov model toward robust learning of spectral 

envelope and wavelet-based statistical signal processing to 

characterize and decompose F0 features. It can retain the fine 

spectral envelope and achieve high controllability of natural 

speech. The experimental results demonstrate that our proposed 

vocoder achieves better naturalness of reconstructed speech 

than the conventional STRAIGHT vocoder, slightly better than 

WaveNet, and somewhat worse than the WaveRNN. 

Keywords— Gaussian mixture model, wavelet transform, 

spectral envelope, vocoder 

I. INTRODUCTION 

Speech synthesis is the artificial production of human 
speech, which is the core part of text-to-speech (TTS) systems 
that convert text content in a specific language into a speech 
waveform. It can be used in several applications, including 
educational, translations, telecommunications, and 
multimedia. Recently, statistical parametric speech synthesis 
(SPSS) has become a widely used speech synthesis framework 
due to its flexibility achieved by acoustic modeling and 
vocoder-based waveform generation. Hidden Markov models 
(HMMs)  [1] and deep neural networks (DNNs) [2] have been 
applied to build the acoustic models for SPSS. Vocoders that 
reconstruct speech waveforms from acoustic features (e.g., 
Mel-cepstra and F0) also play an essential role in SPSS. Their 
performance affects the quality of synthetic speech 
significantly. Some conventional vocoders, such as 
STRAIGHT [3] and WORLD [4] designed based on the 
source-filter model of speech production, have been popularly 
applied in current SPSS systems. However, these vocoders 
still have some deficiencies, such as spectral details and phase 
information loss. 

Some neural generative models for raw audio signals have 
been proposed and demonstrated good performance. For 
example, WaveNet [5] and SampleRNN [6] predicted the 
distribution of each waveform sample conditioned on 
previous samples using convolutional neural networks and 
recurrent neural networks (RNNs), respectively. In [7], the 
WaveRNN model was proposed, which generated 16-bit 
waveforms by splitting the RNN state into two parts and 
predicting the eight coarse bits and the eight fine bits. 
However, due to the autoregressive generation manner, these 
models were very inefficient at the generation stage. 
Therefore, some highly parallel models (e.g., parallel 
WaveNet [8], ClariNet [9], and WaveGlow [10]) were then 
proposed to improve the efficiency of generation. 
Experimental results confirmed that these neural vocoders 
performed significantly better than conventional ones. 
Whereas glottal neural vocoder [11], LPCNet [12], and neural 
source-filter (NSF) vocoder [13], have been further proposed 
by combining speech production mechanisms with neural 
networks and have also demonstrated impressive 
performance. However, in the current development and 
production scenario, it is important not only to achieve full-
band and high-quality synthesis but also to allow users to 
control speech characteristics according to their preferences. 
In addition, there are still some limitations with current neural 
vocoders that they have much higher computation complexity 
than conventional STRAIGHT and WORLD vocoders. A 
generative adversarial network (GAN)–based excitation 
model has been proposed [14]. However, GANs commonly 
suffer from training instability and mode collapse [15]. 
Besides, the autoregressive neural vocoders (e.g., WaveNet, 
SampleRNN and WaveRNN) are very inefficient at synthesis 
time due to their point-by-point generation process. In 
contrast, the flow-based vocoders (e.g., WaveGlow) are 
efficient due to the flow-based model without any 
autoregressive connections. But, the complexity of model 
structures of WaveGlow is reported to be huge with low 
training efficiency. 

To derive a simple closed-form solution, several 
parametrization methods exist for speech spectral modelling. 
These include linear predictive and cepstral coefficients, 
which result in a smooth spectral representation. Mel-
cepstrum [16] is a well-known example of representation; it 
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approximates the spectral envelope with a superposition of 
trigonometric functions. However, statistical averaging of 
Mel-cepstrum in SPSS changes the entire original structure 
and significantly degrades synthetic speech quality. To 
address this problem, approximation of spectral envelopes 
using Gaussian mixture models (GMMs) based on HMM has 
been proposed [17]. The GMM parameters are more stable 
than line spectral pair (LSP) parameters, which are other 
formant-related features [18].  

Our recent work [19] proposed a method to decompose a 
multi-level representation of vocoded features using only the 
continuous wavelet transform. In this paper, we explore the 
methods to improve statistical vocoders efficiency by 
combining the Gaussian-Markov model toward robust 
learning of spectral envelope and continuous F0-based 
wavelet transform. The motivation of the GMM-HMM is to 
assign the spectral envelope of each frame to one of the hidden 
states that will reduce the number of the spectral features. The 
remarkable properties of the wavelet transform have led to 
powerful signal processing methods of using simple scalar 
transformations of individual wavelet coefficients [20]. We 
compare our system accuracy with the end-to-end neural 
models (WaveNet, WaveRNN, and NSF) and parametric 
vocoders (STRAIGHT and Continuous) using male and 
female speakers. Experimental results indicate that our 
framework outperforms the conventional one in quality of 
analysis-synthesized speech and is slightly better than the 
WaveNet and NSF systems. The rest of the paper is formalized 
as follows. First, in Section 2, the mixture of Gaussians 
Markov models is described, followed by a narrative of the 
developed fundamental frequency (F0). The experiments and 
simulation results are then summarized in Section 3. Finally, 
the conclusion is presented in Sections 4. 

II. PROPOSED METHODS 

An overview of our proposed analysis-synthesis 
framework is shown in Figure 1. 

A. Spectral Envelope Approximation with Gaussian-

Markov Model 

A new analysis technique using GMM-based HMM to 
depict the spectral envelope of speech has been developed. We 
first extract spectral envelope using CheapTrick algorithm 
[21].  Cepstral liftering of the magnitude spectra is then 
applied to remove the unwanted high-quefrency effects of the 
excitation from the spectrum. This can yield better fits and 
smoother formant trajectories. After that, we approximate the 
modified spectral envelope with a GMM [22]. The GMM 
parameters are estimated by minimizing a loss function of the 
observed spectral envelope ���� , and the GMM 
approximated one ���� expressed by 

���� � � �	
2�	�
�

	�� ��� �� �� � �	��2	� �                  �1� 

where � denotes frequency, � � 16 is the number of mixture 
components, and �	  , 	�  , �	  denote mean, variance, and 
weight of a Gaussian function with index � , respectively. 
Besides, �	  is initialized with an amplitude value at the 
frequency of �	 while 	 is initialized with a constant value. 
The loss function to be minimized is a divergence between 
two different probability distributions, and this framework 
uses the I-divergence ���, �� given as 

 

Fig. 1: Overview of proposed analysis-synthesis 
framework using GMM and CWT-based approximation of 

speech features. 

���, �� � � ����� !" #������� � ���� $ ����� %      �2� 

Finally, we apply HMM to provide an effective framework 
for modelling time-varying spectral vector sequences. HMM 
assumes that an observation sequence was derived from a 
hidden state sequence of discrete data and will have associated 
with the means and covariances of the Gaussian distributions 
fit to each state. Here, HMM is fit using the Baum-Welch 
algorithm and decoded using the Viterbi algorithm. Let #&  be 
the observed variable at time '. The distribution of #&  depends 
on the state at time ', (&. For a two-state HMM modeled by 
Gaussian distributions )�#&  | (&  �  +�~ -��. , .��                        �3� )�#&  | (&  �  0�~ -1�2 , 2�3                       �4�  

The state at time ' , (& , depends on the previous time 
step, (& � 1. Let 5 be the state transition matrix, where each 
element �.,2  represents the probability of transitioning from 
state + at time ' to state 0 at time ' $ 1 �.2  �  5�(& $ 1 �  0 | (&  �  +�                   �5� 

where P is a 7 � 7 matrix, and 7 � 2 is the number of states 
of the HMM. Since we have no prior information on which to 
condition the first set of observations, we assume the initial 
probability of being in each state is the stationary distribution. 
We then begin with the forward step, which computes the joint 
probability of observing the first ' observations and ending up 
in state + at time ', given the initial parameter estimates 

 5�(&  �  +,  #� �  8�,  #� �  8�, … ,  #&  �  8&  | :�    �6� 

Then in the backward step, the conditional probability of 
observing the remaining observations after time ' given the 
state observed at time ' is computed  5�#& $ 1 �  8& $ 1, … ,  #; �  8; | (& � +,  :�     �7� 

Using Bayes’ theorem, it can show that the product of the 
forward and backward probabilities is proportional to the 
probability of ending up in state + at time ' given all of the 
observations 5�(&  �  + | #� �  8�, … ,  #;  �  8;,  :�               �8� 
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B. Wavelet-Based Decomposition of Continuous F0 

Since F0 is not well defined for the unvoiced segments of 
the speech and the silent intervals, this makes the direct 
wavelet analysis impossible. Therefore, the continuous F0 is 
used in this study. The method in [23] significantly differs 
from the algorithm developed in this paper. The unvoiced gaps 
in [23] were filled using traditional linear interpolation, which 
is different from our method. We applied a continuous pitch 
estimation algorithm [24] which used: 1) Bayesian approach 
that naturally yields estimates for unvoiced segments, along 
with variances for all estimates; 2) Kalman smoother to the 
sequence of estimates and variances to give a sequence of 
pitch estimates. 

A wavelet is a short waveform with finite duration, whose 
average value is zero. The continuous wavelet transform 
(CWT) can describe the signal in various transformations of a 
mother wavelet. Scaling the mother wavelet, the transform can 
capture high frequencies if the wavelet is compressed and low 
frequencies if it is stretched. The process is repeated by 
translating the mother wavelet. The CWT output is an >�- 
matrix where > is the number of scales and - is the length of 
the signal. The CWT coefficient at scale ? and position @ is 
given by: 

          A�?, @� � 1√? C )���D�� � @? �E�FG
HG                         �9� 

where � is the input signal, and D is the mother wavelet. A set 
of 10 components is defined, where each component is 
approximately one octave apart. The original signal can be 
recovered from the wavelet representation by inverse 
transform using the double-integral form over all scales and 
locations, ? and @ (for the proof, see [25]) 

      )��� � C C A�?, @�?�√? D�@ � �? �E�E?FG
HG

FG
HG                  �10� 

Then we can obtain an approximation to the original signal 
by summing the scaled CWT coefficients over all scales 

)��� � � A.�?, @; �� $ L����M
.��                            �11� 

where L��� is the reconstruction error. CWT can analyze a 
speech waveform with a time-frequency resolution different 
from the Short-time Fourier Transform. This leads to high-
frequency resolution with CWT at low frequencies and high 
time resolution at high frequencies. In Figure 2, the second 
pane shows the CWT of the F0 contour of an English sentence 
shown in the bottom pane. 

III. EXPERIMENTS 

A. Experimental Setup 

To evaluate of the proposed system, we used two speakers 
from the CMU-ARCTIC database [26], where SLT is female 
and BDL is male. The sampling frequency is set to 16 kHz 
with 16-bit linear quantization. The total number of utterances 
is 1132 per speaker, and the entire utterance duration is about 1 hour per speaker. Acoustic features were extracted every 5ms after applying a window of 25ms. In the experiment, we 
compare our proposed model with the following speech 
methods: 

 

Fig. 2: Top pane shows a spectrogram of the speech 
signal, the second pane depicts the continuous wavelet 

transform with Mexican hat mother wavelet of F0, the third 
pane shows the scales, and bottom pane gives the modified 

continuous F0. 

 

 WaveNet: It was trained by using 80-dim log-Mel 
spectrograms. The network architecture of the 
WaveNet was the same as that used in [8]. The total 
number of utterances is 6580 for training and 350 for 
testing (about 6 hours of recorded speech). 

 NSF: The model structure and the training method of 
the NSF vocoder were the same as that of the phase 
spectrum predictor model in the HiNet vocoder [13].  

 WaveRNN: The structure of a 16-bit WaveRNN-
based neural vocoder implemented here was the same 
one used in [7]. The built model had one hidden layer 
of 1024 nodes where 512 nodes for coarse outputs and 
another 512 nodes for acceptable results. The 
waveform samples were quantized to discrete values 
by 16-bit linear quantization. 

 STRAIGHT: The conventional STRAIGHT vocoder. 
At synthesis time, the spectral envelope at each frame 
was first reconstructed from input Mel-cepstra and 
frame energy, and was then used to generate speech 
waveforms together with input source parameters [3]. 

 Continuous (Baseline): It was used as a baseline 
vocoder [27] in this work. The total number of 
dimensions of the continuous vocoder were 26 (24 
Mel-cepstrum + 1 MVF + 1 contF0). 

 Anchor: For lower anchor, we used a simple pulse-
noise excitation vocoder. Before the synthesis, the 24-
order spectral components [28] were distorted (the 13-
24th features were replaced with their average), thus 
resulting in a low quality resynthesis. 

B. Evaluation Metrics 

To prove the proposed model is correct and accurate, we 
evaluated Mel-Cepstrum Distortion (MCD) between the 
natural speech and synthesized speech: 
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>ST � 10log 10 X � YZ[\]�^� � Z_`a&b�^�c�d
e��            �12� 

where Z[\]  and Z_`a&b  are Mel-cepstrum from original and 
synthesized speech, respectively, and > is the order of Mel-
cepstrum. The average MCD results from the natural and 
synthesized speech are presented in Table 1. 

TABLE 1. COMPARISON OF MEL-CEPSTRUM DISTORTION BETWEEN 
SPECTRAL FEATURES OF NATURAL AND SYNTHESIZED SPEECH. 

Systems  
MCD (dB) 

Male Female 

Baseline 4.086 4.194 

STRAIGHT 3.792 3.925 

NSF 3.671 3.650 

WaveNet 3.785 3.924 

WaveRNN 3.428 3.589 

Proposed 3.399 3.564 

 

Comparing the proposed method with the baseline and 
other end-to-end systems, the suggested model decreases the 
value of MCD, proving that the GMM-HMM has a significant 
impact on the spectral feature of speech synthesis. This means 
that it could reproduce the original spectrum correctly. Thus, 
the proposed method could capture the spectral information 
with relatively higher accuracy and outperform the state-of-
the-art neural vocoders. 

C. Subjective Results 

To calculate the perceptual quality of the developed 
method, we performed a web-based MUSHRA (MUlti-
Stimulus test with Hidden Reference and Anchor) listening 
experiment. We evaluated natural sentences with the 
synthesized ones from the baseline, STRAIGHT, NSF, 
WaveNet, WaveRNN, proposed, and an anchor system. The 
participants had to assess the naturalness of each stimulus 
relative to the reference (which was the natural sentence), 
from 0 (highly unnatural) to 100 (highly natural). Ten 
participants (7 males, 3 females) with a mean age of 33 years 
and no known hearing defects were invited to run the online 
perceptual test. On average, the MUSHRA test took 10 
minutes. The listening test samples are available online 
http://smartlab.tmit.bme.hu/eusipco2022 

Results are presented in Figure 3. As can be seen, there are 
still differences when compared against the WaveRNN 
system. However, the proposed method is significantly 
preferred over the baseline and achieves higher naturalness 
than the WaveNet and NSF neural vocoders (Mann-Whitney-
Wilcoxon ranksum test with a 95% confidence level). Hence, 
our method presents a good alternative technique to other 
systems for the reconstruction of speech. 

 

Fig. 3: Sound quality of synthesized speech. 

 

IV. CONCLUSIONS 

The current paper has proposed a speech analysis-
synthesis system based on the Gaussian-Markov model of 
spectral envelope and wavelet-based decomposition of F0. 
Objective metrics and sound quality tests supported our work. 
We confirmed through experiments that our speech model 
could generate a natural-sounding synthetic speech and 
superior to state-of-the-art WaveNet vocoder on the CMU-
ARCTIC database. This means that our new system is simple 
and requires fewer acoustic parameters than the neural 
vocoder investigates in our paper. Future work includes 
optimizing the number of components in the DNN-based TTS 
and voice conversion frameworks. 

ACKNOWLEDGMENT 

The research reported in this publication, carried out by 
Department of Telecommunications and Media Informatics 
Budapest University of Technology and Economic and 
IdomSoft Ltd., was supported by the Ministry of Innovation 
and Technology and the National Research, Development and 
Innovation Office within the framework of the National 
Laboratory of Infocommunication and Information 
Technology. The research was partly supported by the APH-
ALARM project (contract 2019-2.1.2-NEMZ-2020-00012) 
funded by the European Commission and the National 
Research, Development and Innovation Office of Hungary. 
Tamás Gábor Csapó's research was supported by the Bolyai 
János Research Fellowship of the Hungarian Academy of 
Sciences and by the ÚNKP-21-5 (identifier: ÚNKP-21-5-
BME-352) New National Excellence Program of the Ministry 
for Innovation and Technology from the source of the 
National, Research, Development and Innovation Fund. 

 

REFERENCES 

[1] K. Tokuda, Y. Nankaku, T. Toda, H. Zen, J. Yamagishi, and K. Oura, 
"Speech synthesis based on hidden Markov models," Proceedings of 
the IEEE, vol. 101, no. 5, p. 1234–1252, 2013. 

[2] H. Zen, A. Senior, and M. Schuster, "Statistical parametric speech 
synthesis using deep neural networks," in Proc. ICASSP, p. 7962–
7966, 2013.  

[3] H. Kawahara, I. Katsuse, and A. Cheveigne, "Restructuring speech 
representations using a pitch-adaptive time–frequency smoothing and 
an instantaneous-frequency-based f0 extraction: Possible role of a 
repetitive structure in sounds," Speech communication, vol. 27, no. 3, 
p. 187–207, 1999.  

[4] M. Morise, F. Yokomori, and K. Ozawa, "World: A vocoder based 
high-quality speech synthesis system for real-time applications," 
IEICE Transactions on Information and Systems , Vols. E99-D, no. 7, 
p. 1877–1884, 2016.  

1153



[5] A.V. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, 
N. Kalchbrenner, A. Senior, and K. Kavukcuoglu, "WaveNet: A 
generative model for raw audio," CoRR abs/1609.03499, 2016.  

[6] S. Mehri, K. Kumar, I. Gulrajani, R. Kumar, S. Jain, J. Sotelo, A. 
Courville, and Y. Bengio, "SampleRNN: An unconditional end-to-end 
neural audio generation model," In Proceedings of the Conference on 
Learning Representations (ICLR), 2017. 

[7] N. Kalchbrenner, E. Elsen, K. Simonyan, S. Noury, N. Casagrande, E. 
Lockhart, F. Stimberg, A. v. d. Oord, S. Dieleman, and K. 
Kavukcuoglu, "Efficient neural audio synthesis," In Proceedings of the 
International Conference on Machine Learning (PMLR), 2018.  

[8] A. v. d. Oord, Y. Li, I. Babuschkin, K. Simonyan, O. Vinyals, K. 
Kavukcuoglu, G. v. d. Driessche, E. Lockhart, L. C. Cobo, F. Stimberg 
et al., "Parallel WaveNet: Fast high-fidelity speech synthesis," In 
Proceedings of the International Conference on Machine Learning 
(PMLR), Stockholm, 2018.  

[9] W. Ping, K. Peng, and J. Chen, "ClariNet: Parallel wave generation in 
end-to-end text-to-speech," In Proceedings of the Conference on 
Learning Representations (ICLR), 2019.  

[10] R. Prenger, R. Valle, and B. Catanzaro, "WaveGlow: A flow based 
generative network for speech synthesis," In Proceedings of the IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), pp. 3617-3621, 2019.  

[11] L. Juvela, B. Bollepalli, V. Tsiaras, and P. Alku, "GlotNet-A raw 
waveform model for the glottal excitation in statistical parametric 
speech synthesis," IEEE/ACM Transactions on Audio, Speech, and 
Language Processing, 2019.  

[12] J.-M. Valin and J. Skoglund, "LPCNet: Improving neural speech 
synthesis through linear prediction,”," In Proceedings of the IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), pp. 5891–5895, 2019.  

[13] X. Wang, S. Takaki, and J. Yamagishi, "Neural source-filter-based 
waveform model for statistical parametric speech synthesis," In 
Proceedings of the IEEE International Conference on Acoustics, 
Speech and Signal Processing (ICASSP), pp. 5916–5920, 2019.  

[14] B. Bollepalli, L. Juvela, and P. Alku, "Generative adversarial network-
based glottal waveform model for statistical parametric speech 
synthesis," In Proceedings of the Interspeech, pp. 3394–3398, 2017.  

[15] T. Kaneko, H. Kameoka, N. Hojo, Y. Ijima, K. Hiramatsu, and K. 
Kashino, "Generative adversarial network-based postfilter for 
statistical parametric speech synthesis," In Proceedings of the IEEE 
International Conference on Acoustics, Speech and Signal Processing 
(ICASSP), 2017.  

[16] K. Tokuda, T. Kobayashi, T. Masuko, and S. Imai, “, "Mel-generalized 
cepstral analysis - a unified approach to speech spectral estimation," In 

Proceedings of the International Conference on Spoken Language 
Processing (ICSLP), Yokohama, Japan, pp. 410–415, 1994.  

[17] H. Tang, M. Hasegawa-Johnson, and T. Huang, "Toward robust 
learning of the Gaussian mixture state emission densities for hidden 
Markov models," In Proceedings of the IEEE International Conference 
on Acoustics, Speech and Signal Processing (ICASSP), pp. 5242–
5245, 2010.  

[18] Y. Ohtani, M. Tamura, M. Morita, T. Kagoshima, and M. Akamine, 
"Histogram-based spectral equalization for HMM-based speech 
ynthesis using mel-LSP," In Proceedings of the  Interspeech, Portland, 
U.S.A., 2012.  

[19] M.S. Al-Radhi,  T.G. Csapó, C. Zainkó, G. Németh, "Continuous 
Wavelet Vocoder-based Decomposition of Parametric Speech 
Waveform Synthesis," In Proceedings of the Interspeech, pp. 2212-
2216, 2021.  

[20] M.S. Crouse, R.D. Nowak, and R.G. Baraniuk, "Wavelet-Based 
Statistical Signal Processing Using Hidden Markov Models," IEEE 
Transactions On Signal Processing, vol. 46, no. 4, pp. 886-902, 1998.  

[21] M. Morise, "CheapTrick, a spectral envelope estimator for high-quality 
speech synthesis," Speech Communication, vol. 67, p. 1–7, 2015.  

[22] B.P. Nguyen, M. Akagi, "A flexible spectral modification method 
based on temporal decomposition and Gaussian mixture model," 
Acoustical Science and Technology, vol. 30, no. 3, pp. 170-179, 2009.  

[23] M. Vainio, A. Suni, D. Aalto, "Continuous wavelet transform for 
analysis of speech prosody," In: Proceedings of Tools and Resources 
for the Analysis of Speech Prosody (TRASP), satellite workshop of 
Interspeech, France, 2013.  

[24] P.N. Garner, M. Cernak, and P. Motlicek, "A simple continuous pitch 
estimation algorithm," IEEE Signal Processing Letters, vol. 20, no. 1, 
pp. 102-105, 2013.  

[25] S. Mallat, "A wavelet tour of signal processing," Academic press, 1999.  

[26] J. Kominek and A. W. Black, "The CMU ARCTIC speech databases," 
In: Proceedings of the 5th ISCA Speech Synthesis Workshop, 
Pittsburgh, USA, p. 223–224, 2004.  

[27] M.S. Al-Radhi, O. Abdo, T.G. Csapó, S. Abdou, G. Németh, M. 
Fashal, "A continuous vocoder for statistical parametric speech 
synthesis and its evaluation using an audio-visual phonetically 
annotated Arabic corpus," Computer Speech & Language, vol. 60, pp. 
1-15, 2020.  

[28] S. Imai, K. Sumita, C. Furuichi , "Mel Log Spectrum Approximation 
(MLSA) filter for speech synthesis," Electronics and Communications 
in Japan (Part I: Communications), vol. 66, no. 2, pp. 10-18, 1983. 

 

 

 

 

1154


