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Abstract—Speech technology is becoming ever more
ubiquitous with the advance of speech enabled devices
and services. The use of speech synthesis in Augmen-
tative and Alternative Communication tools, has facili-
tated inclusion of individuals with speech impediments
allowing them to communicate with their surroundings
using speech. Although there are numerous speech
synthesis systems for the most spoken world languages,
there is still a limited offer for smaller languages.
We propose and compare three models built using
parametric and deep learning techniques for Macedo-
nian trained on a newly recorded corpus. We target
low-resource edge deployment for Augmentative and
Alternative Communication and assistive technologies,
such as communication boards and screen readers.
The listening test results show that parametric speech
synthesis is as performant compared to the more ad-
vanced deep learning models. Since it also requires less
resources, and offers full speech rate and pitch control,
it is the preferred choice for building a Macedonian TTS
system for this application scenario.

Index Terms—speech synthesis, Macedonian, assis-
tive technology, augmented and alternative communi-
cation, communication board

I. Introduction

Speech synthesis is the artificial production of human
speech. It’s main use is the generation of intelligible and
natural sounding speech on the basis of textual input, i.e.
text-to-speech (TTS) synthesis [1]. Up until the 1990’s,
TTS synthesizers predominately used formant synthesis
and were based on modelling the speech production pro-
cess [2]. Although scoring high on intelligibility, these sys-
tems did not sound very natural and came with a high de-
velopment cost. This limited the development of TTS tech-
nology to only the larger languages with ample resources.
In the 1990’s, concatenative synthesis became increasingly
popular [3]. Based on the concatenation of prerecorded
natural speech segments to generate the requested speech
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output, this approach gives the synthetic speech a very
natural sound, whilst eliminating the expensive speech
model development process. This led to the proliferation
of TTS systems across the globe, bringing speech synthesis
for the first time to many of the languages of the world. In
fact, due to its high naturalness, concatenative synthesis
was the predominant technology used in most commercial
systems up until the late 2010’s [4], and some still use it
today.

Concatenative systems, although highly natural, are
inflexible in that they allow limited control of pitch and
rhythm, if any. This precluded their use in utility TTS
systems, such as screen readers, where control was more
important than naturalness. Also, they require the record-
ing and annotation of large corpora to add new voices. At
the turn of the century, these limitations as well as the
strive to unite both TTS and automatic speech recognition
(ASR) under one common framework opened the doors
to the paradigm of statistical parametric speech synthesis
[5]. Parametric TTS systems introduced in the 2000’s used
the well established Hidden Markov Models (HMMs) and
training methods used in ASR to reverse the flow and
use them to generate speech based on input text. This
allowed increased system control and eased the creation of
new voices through reducing training data requirements.
Due to its reduced naturalness, parametric synthesis was
primarily used in research and assistive technologies.

Since the late 2010’s advances in speech synthesis can
be overwhelmingly contributed to the development of
deep learning models. Indeed, today’s state-of-the-art TTS
systems are almost exclusively based on the superior
performance of general purpose end-to-end mappings that
use millions of tunable parameters [6], [7]. Deep Learning
(DL) has led TTS to the long term goal of reaching human
naturalness of synthetic speech, so much so that new
systems can hardly be identified as artificial [8].

Speech enabled assistive technology is the key enabler
of the inclusion of people with disabilities [9]. Speech
synthesis allows the digital inclusion of the blind or vi-
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sually impaired through its use in screen readers. Speech
enabled Augmentative and Alternative Communication
(AAC) systems allow the speech and language impaired
to communicate with their surroundings. Communication
boards, a type of AAC, allow the user to select a sequence
of symbols represented via icons and then synthesise
speech based on the sequence. Communication boards can
be deployed on mobile electronic devices, such as tablets
and smartphones, as well as dedicated hardware. Cboard
is a free software AAC web app that allows users to com-
municate in a number of languages1. The speech synthesis
systems presented in this paper were developed within
a larger project for localising Cboard for Macedonian.
Previously, Govorko – a communication board targeting
Macedonian users was developed by students at FEEIT
[10].2

The first attempts at speech synthesis in Macedonian
date back to 1996, when a concept solution for such a
system was proposed. Early attempts include emulating
Macedonian using the Croatian diphone inventory under
the MBROLA framework, [11], [12]. The first Macedonian
TTS systems developed used diphone based concatenative
synthesis [13], [14]. At that time Macedonian was also
included in regional commercial offerings, initially using a
Serbian inventory [15], and later a dedicated one [16]. The
recent availability of free and open source implementations
of Deep Learning based speech synthesis systems has
stimulated the development of both commercial3 and open
source [17] TTS systems for Macedonian in 2020. Our
results from 2021, confirm that DL models can indeed
approach human naturalness in speech quality.4 In mid
2021 we saw the release of the first fully functional free
software based TTS for Macedonian, with its inclusion in
the RHVoice parametric speech synthesis system.5

We train and compare four speech synthesis models
targeting low-resource edge deployment for use in assistive
speech technology, primarily Augmentative and Alterna-
tive Communication applications and screen readers. To
train the models we design and record a speech corpus
with a Macedonian professional speaker. We evaluate the
models via an online listening test using the Mean Opinion
Score (MOS) and Multiple Stimuli with Hidden Reference
and Anchor (MUSHRA) method.

II. Text normalisation for standard
Macedonian

Macedonian is a South Slavic language spoken by more
than 3 million native speakers in Macedonia and in the
world. Grapheme-to-phoneme mapping and stress position
are an important part of the text normalisation module

1https://www.cboard.io
2https://gitlab.com/govorko/govorko
3https://maika.mk/
4https://speech.feit.ukim.edu.mk/
5https://rhvoice.org/

that enables high-quality speech synthesis in Macedo-
nian. Macedonian orthography is essentially phonemic,
eliminating the need for complex grapheme-to-phoneme
mapping. Each of the 31 phonemes is represented by a
single grapheme. In addition there are 6 allophones for 4
of the phonemes, most notably syllabic r, which comprises
almost exclusively all the occurrences of the schwa /@/.
These allophones are determined by the context of the
occurrence of the grapheme. Another exception to the one-
to-one grapheme-to-phone mapping in Macedonian are the
two rules of orthoepy: voicing assimilation and devoicing
[18]. Voicing assimilation occurs when two consonants
with different voicing come next to each other in a word.
In this case, the first consonant is substituted for its
voiced/voiceless pair, in suit to the voicing of the second
consonant. Although this process is largely integrated
into Macedonian orthography, there are still exceptions.
Devoicing, on the other hand, is never written and occurs
on the ultimate voiced consonant at the end of phrase
boundaries.

Stress in Macedonian is largely antepenultimate – occur-
ring on the 3rd syllable from the last. Thus the absolute
position of the stress shifts if the word is extended with
suffixes. For words with 2 syllables this translates to the
first syllable being stressed. Exceptions to this rule are
almost exclusively made up of loan words, but also include
some Macedonian words and personal names. Not all loan
words have irregular stress though, as some have either
been accommodated to the antepenultimate rule, while
some are in the process of accommodation and can bear
both an irregular and regular stress.

III. Methodology

In this work, we train and evaluate one parametric
speech synthesis system and three Deep Learning systems
based on one TTS and two neural vocoder models. For the
parametric TTS we use RHVoice, while we base the DL
systems on the Tacotron 2 [8] TTS model to generate the
mel spectrograms from the input text. We then use three
different vocoders to generate the speech waveform:

• the original Griffin-Lim algorithm [19] for phase es-
timation, followed by an inverse short-time Fourier
transform, as in the original Tacotron approach,

• the Multi-band MelGAN vocoder [20], and
• the Parallel WaveGAN vocoder [21].

We chose to use these vocoders based on our target real-
time edge deployment scenario. There are higher quality
vocoders, such as the autoregressive WaveNET [6], how-
ever they cannot run in real-time, especially not on devices
with limited resources.

To measure and compare the quality of the synthe-
sised speech with the different models, we conducted a
subjective Mean Opinion Score (MOS) test as well as
a comparative Multiple Stimuli Hidden Reference and
Anchor (MUSHRA).
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A. RHVoice and HTS
RHVoice is an open-source multilingual speech synthe-

sizer focused on bringing free high-quality voices to the
visually impaired for use with their screen reader. Their
focus is on languages for which there is a lack of good
voices for this purpose. The creator of RHVoice, Olga
Yakovleva, and many of the contributors are blind or
partially sighted themselves. The speech synthesis engine
is based on the HMM speech synthesis system HTS [22],
which in turn uses the HMM toolkit HTK used primarily
for speech recognition [23]. The system uses context-
dependent HMMs to simultaneously model the speech
spectrum, the excitation signal, and phoneme durations.
The target features are the Mel Generalised Cepstrum
and band aperiodicities, and the system also models the
pitch via the log f0. Although the synthesised speech lacks
human level naturalness, the synthesis is fully controllable,
allowing for changes in speech rate and pitch, thus making
it perfect for the use with screen readers.

B. Tacotron 2
Tacotron 2 has been one of the most successful Deep

Learning models developed for for speech synthesis [8]. It
is the system to achieve human-level naturalness, synthe-
sising speech that is difficult to distinguish from real hu-
man speech. The system comprises a sequence-to-sequence
architecture based on the original Tacotron [7], modified to
generate mel spectrograms, and a WaveNet based neural
vocoder [6]. The Tacotron model simplifies the traditional
speech synthesis pipeline by eliminating the need of com-
plex linguistic and acoustic features with a single neural
network trained from data alone.

C. Multi-band MelGAN
Generative adversarial networks (GANs) have shown

great success in many computer vision related tasks, such
as image generation and image-to-image translation, but
neural vocoders like MelGAN [24], Parallel WaveGAN [21]
and multi-band MelGAN [20], have shown very promising
performance on audio waveform generation tasks. These
models provide very fast waveform generation, making
them very suitable for real-time applications. MelGAN is a
non-autoregressive feed-forward convolutional neural net-
work architecture that perform audio waveform generation
[24]. It was the first successfully trained GAN to yield high-
quality TTS synthesis in real-time on a CPU.

The generator in MelGAN uses a stack of transposed
convolutional layers to upsample the input Mel sequence.
Each transposed convolution is followed by a stack of resid-
ual blocks with dilated convolutions to increase the recep-
tive field. The success of MelGAN is essentially achieved
by using multiple discriminators at different audio scales,
motivated from the fact that audio has structure at differ-
ent levels and each discriminator intends to learn features
for different frequency ranges of audio. In addition to the
discriminator’s signal, a feature matching objective is also

used to train the generator. This objective minimizes the
L1 distance between the discriminator feature maps of real
and synthetic audio.

Multi-band MelGAN (MB-MelGAN) is an architecture
evolved from the basic MelGAN, providing even faster
waveform generation and quality improvements in the gen-
erated speech [20]. The generator network in MB-MelGAN
generates signals in multiple frequency bands instead of
the full frequency band as in MelGAN. The predicted
audio signals in each frequency band are upsampled and
then passed to the synthesis filters. These sum the signals
from each frequency band to create the full-band audio
signal. Other improvements in MB-MelGAN include the
expansion of the receptive field to about twice of that in
MelGAN and substitute the feature matching loss with
multi-resolution STFT loss, as in Parallel WaveGAN,
which has been proven to be more effective to measure
the difference between fake and real speech.

D. Parallel WaveGAN
Parallel WaveGAN is another parallel waveform genera-

tion method based on GAN [21]. A WaveNet-based model
conditioned on an auxiliary feature, e.g. mel-spectrogram,
is used as the generator, which transforms input noise to
the output waveform in parallel. To improve the stability
and efficiency of the adversarial training process, multi-
resolution STFT loss is proposed. The STFT loss is sum
of STFT losses with different analysis parameters, i.e.
FFT size, window size and frame shift. By combining
multiple STFT losses with different analysis parameters,
the generator can learn the time-frequency characteristics
of speech better and it also prevents the generator from
being overfit to a fixed STFT representation.

E. MOS
Mean Opinion Score (MOS) is the most commonly used

method for assessing the quality of synthesised speech.
It is the arithmetic mean over all individual values on a
predefined scale that a subject assigns to their opinion
of the performance of a system. It involves a group of
subjects to listen to the different samples generated with
one or several algorithms and evaluate them one by one
on a scale. The standard MOS scale ranges from 1 to 5,
where 1 is lowest, and 5 is the highest perceived quality.
Real human speech should score between 4.5 and 4.8.

The MOS score µ of a model is estimated by averaging
the scores mk obtained for each k of a set of synthesised
samples N using:

µ =
1

N

N∑
k=1

mk . (1)

In addition, the 95% confidence intervals for the scores are
computed using:

CI =

[
µ− 1.96

σ√
N
, µ+ 1.96

σ√
N

]
, (2)

where σ is the standard deviation of the scores.
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F. MUSHRA
MOS can be readily used as a proxy to the perceptual

quality of a TTS system. However, it is a time consuming
process, making it hard to compare many models at the
same time. MUSHRA is an evaluation method used in
codec listening test to evaluate lossy compression algo-
rithms, and is defined by ITU-R recommendation BS.1534-
3. In contrast to MOS, it makes it easier to compare
different algorithms as all of the results are presented
at the same time. In addition, since the scale is now in
the range 0 – 100, more fine-grained differences can be
captured.

In a MUSHRA listening test, the subject is presented
with the reference, which is explicitly labeled so. Then,
they are asked to rate a set of results that correspond
to the reference. The set also includes a hidden copy
of the reference, as well as one or more anchors that
should represent a lower or mid reference values. The
anchors serve the purpose of calibrating the score range
so that small differences are not overly penalised. These
are typically a 3.5 kHz and a 7 kHz low-pass version of
the reference.

IV. Dataset

To train the models, we first extracted a set of 3,500
phonetically rich utterances from a large body of Macedo-
nian text comprising books, Wikipedia articles and online
media. We recorded a professional female speaker in the
sound proof speech studio at FEEIT. We used a studio-
grade quality Sennheiser MK 4 condenser microphone to
make the recordings. The audio was sampled at 44.1 kHz
with a 16 bit resolution using a professional Focusrite
Scarlet 4i4 audio interface. The total duration of the
recorded speech corpus is 6 h.

V. Experiment

We trained the paramteric TTS model on the cre-
ated speech corpus using the training tools provided by
RHVoice. We trained each the Deep Learning based mod-
els on the same data up to 250k iterations.

To evaluate their performance we synthesised a set of 15
phonetically rich utterances with varying length, using:

• RHVoice,
• Tacotron 2 + Griffin-Lim,
• Tacotron 2 + MB-MelGAN, and
• Tacotron 2 + Parallel WaveGAN.

This resulted in a total of 60 synthesised utterances. In
addition we also had our test utterances read by the
recorded speaker.

We then used the 10 shorter utterances for the MOS
test, and the 10 longer one for the MUSHRA evaluation.
In this way we optimised the duration of the experiment,
whilst keeping a 50% overlap between the two tests. This
meant that listeners were asked to rate on the MOS
scale 50 utterances, including the synthesised and natural
recordings. In the MUSHRA they were asked to compare

TABLE I
Mean Opinion Score of the models

Model MOS 95 % CI

RHVoice 3.35 0.59

Tacotron 2 + Griffin-Lim 2.86 0.67

Tacotron 2 + MB-MelGAN 2.20 0.52

Tacotron 2 + Parallel WaveGAN 3.43 0.58

Natural speech 4.79 0.30

Griffin-Lim PWGAN LP filtered Natural

Model
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Fig. 1. MUSHRA test results.

10 sets of stimuli, each set comprising of 6 stimuli includ-
ing: the 4 synthesised utterances, the natural recording
used as reference and a 3.5 kHz lowpass filtered anchor.

We invited 21 native speakers to part take in the listen-
ing experiments. They were conducted online, using the
webMUSHRA webapp [25]. The listeners were instructed
to wear headphones and be in a quiet room during the
test.

VI. Results

The results from the MOS analysis are presented in
Table I. We can see that the Parallel WaveGAN model
scored slightly better than the RHVoice model. On the
other hand, the MB-MelGAN model scored the worst,
even when compared to the Griffin-Lim based synthesis. In
fact, both of these models scored worse than the RHVoice
model.

The results from the MUSHRA analysis are shown in
Fig. 1. We can see that they confirm the results obtained
with the MOS analysis, albeit RHVoice this time comes
out on top by a small margin. MB-MelGAN was evidently
judged as the worse model. What is interesting to note
is that although the 3.5 kHz low-pass filtered natural
speech was meant to serve as a lower bound anchor,
in fact listeners preferred it to all of the models. This
was perhaps due to the markedly artificial sound of the
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synthesised samples, which was detrimental compared to
a band-limited but natural signal.

VII. Conclusion
In our work we trained and tested four speech synthesis

models – one based on paramteric speech synthesis and
three based on Deep Learning. The models were chosen so
that they could be used for assistive devices and applica-
tions, including communication boards and screen readers.
We also designed and recorded a speech corpus with a
professional speaker that was used for model training.
To evaluate the models we conducted both a MOS and
a MUSHRA listening test. The results show that the
parametric HTS model fairs relatively well to the more
advanced TTS models, scoring within a small margin with
the more advanced Tacotron 2 + Parallel WaveGAN in
both evaluations. Since the parametric model requires a
lot less resources, and it is also controllable both in speech
rate and in pitch, we can conclude that it is the preferred
choice for a Macedonian TTS system for the application
scenario.
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