
Wavelet transformation approaches
for prediction of atrial fibrillation

Hassan Serhal
Univ Angers, LARIS, SFR MATHSTIC

Angers, France
hassan.serhal@etud.univ-angers.fr

Nassib Abdallah
Univ Angers, LARIS, SFR MATHSTIC

& LaTIM, INSERM, UMR 1101, Univ Brest
France

nassib.abdallah@univ-angers.fr

Jean-Marie Marion
UCO, LARIS, SFR MATHSTIC

Angers, France
marion@uco.fr

Pierre Chauvet
UCO, LARIS, SFR MATHSTIC

Angers, France
pierre.chauvet@uco.fr

Mohamad Oueidat
Faculty of Technology, Lebanese University

Lebanon
mohoueidat@yahoo.com

Anne Humeau-Heurtier
Univ Angers, LARIS, SFR MATHSTIC

Angers, France
anne.humeau@univ-angers.fr

Abstract—Prediction of atrial fibrillation (AF) is a major
issue in medicine. This is due to the fact that AF is often
asymptomatic. In this work, we present approaches based on
wavelet decomposition to find features in the signal that can
predict this disease. Our model consists of four parts: pre-
processing, feature extraction, feature selection, and classification
for prediction. The presented work shows a good predictive
performance (94% accuracy) before 5 min of AF onset and a
prediction accuracy of 85.5%, 110 min before AF onset. Our
code will be available for researchers upon request.

Index Terms—Prediction, paroxysmal atrial fibrillation, MIT-
BIH database, continuous wavelet transform, wavelet packet
decomposition, XGBoost, feature engineering.

I. INTRODUCTION

The heart propels blood, provides oxygen and nutrients to
all parts of the body through the circulatory system. The
blood pumped by the heart rejects carbon dioxide and other
substances that are not needed by the body [1]. The heart rate
variability (HRV) refers to the signal computed from the time
variations of the RR intervals. In the absence of pathology,
an adult has a regular heart rate: between 60 and 100 beats
per minute (bpm) during the day and between 40 and 80 bpm
at night. Outside these limits, disturbances might be present
in the cardiac activity [2], [3]. For example, bradycardia is
characterized by a heart rate lower than 60 bpm and can
be of sinus, junctional, or ventricular origin. Tachycardia is
characterized by a rate of more than 100 bpm and can be of
sinus, atrial, or ventricular origin. Also, atrial fibrillation (AF)
is caused by irregular electrical activations of the atria, which
further affect the regular function of the ventricles. AF can be
diagnosed from irregular RR intervals and/or the presence of
a continuous, time-varying atrial fibrillatory signal (F wave)
instead of P waves [4]. AF may have various forms. It starts as
paroxysmal (usually stops in less than 24 hours but may last up
to a week and spontaneously return to normal sinus rhythm and
is asymptomatic in general), be more persistent with time (for
more than a week), and permanent (cannot be corrected

by treatments) [5], [6]. In addition, COVID-19 causes non-
generalized heart rhythm abnormalities and increases episodes
of AF [7]. AF increases the risk for stroke that can happen
when the blood flow to the brain is blocked by a blood clot or
by fatty deposits, called plaque, in the blood vessel lining. It is
estimated that 15.9 million people in the United States by 2050
and 17.9 million people in Europe by 2060 will suffer from
AF [8]. Therefore, early detection of AF is very important. For
this purpose, many studies using artificial intelligence (AI)
have been proposed in the literature to distinguish normal
from abnormal beats. These approaches can be classified into
two categories: machine learning (ML) and deep learning
(DL) algorithms. Many studies address AF classification with
great precision. However, prediction remains a great challenge
since, as discussed above, AF is asymptomatic for patients.
In this study, we look for symptoms by analyzing features
extracted from electrocardiograms (ECG) sequences to predict
the occurrence of AF. For this purpose, we developed a
pipeline that studies the sequence and, using a classification on
the sequence, can predict the occurrence of AF in an ECG. The
motivation to predict AF very early comes from the possibility
for the patient to start an adequate preventive treatment.
The originality of our work is to go further than the literature
for AF prediction. Indeed, to predict AF 30 min before its
onset, Wu et al. [9] obtained 89%, 88%, and 92% with three
different ensemble learning methods respectively: Bagging,
AdaBoost, and Stacking. To predict AF 5 min before its onset,
Narin et al. [10] achieved an accuracy of 98.7%. Erdenebayar
et al. [11] obtained an accuracy of 98.7% to predict the onset
of AF 30s before it starts.
This paper is organized as follows: Section II presents the
materials and methods used, including the database, the pre-
processing methods, the feature extraction and selection. Sec-
tion III presents the classification process. In Section IV and
V, we present and discuss the results obtained using the MIT-
BIH Prediction Challenge dataset. Finally, in section VI, we
conclude our work and present the perspectives.
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II. MATERIALS AND METHODS

A. Overview

To perform the classification for AF prediction, the MIT-
BIH paroxysmal atrial fibrillation (PAF) database was used in
this study. Two different types of heartbeats (signals without
AF and with AF) were examined. Our method, as shown
in Fig. 1, is divided into four major steps: pre-processing,
feature extraction, feature selection, and classification. In the
pre-processing phase, we grouped the signals per patient to
reconstruct the ECG. The PAF dataset has the advantage of
having denoised signals, so we did not use any filter for
noise removal. Then, we used two different wavelet trans-
form (WT) approaches for the feature extraction process. The
first one is the continuous wavelet transform (CWT) using
the Mexican hat wavelet (mexh). The second approach is the
wavelet packet decomposition (WPD) using the Daubechies
wavelet 4 (db4). The results of both approaches were used to
calculate statistical features, gray level co-occurrence matrix
(GLCM) and Hu invariant moments. The GLCM method is
very useful to extract ECG signals features such as periodicity
and distortions. It generates a square matrix whose dimension
equals the number of gray levels in the image [7]. We also
investigated the effect of the principal component analysis
(PCA) for feature reduction. We split our dataset to test and
training datasets, and, finally, we used the random forest (RF)
and the extreme gradient boosting (XGBoost) models for the
classification. We considered different metrics such as accu-
racy, sensitivity, specificity, and F1-score for the validation of
our models [11]–[13].

B. ECG data

A variety of cardiac arrhythmia databases are available
online. In this paper, the paroxysmal atrial fibrillation (PAF)
MIT-BIH database available on Physionet has been used. Each
record contains two-channels (derivation 0, derivation 1) and
was sampled at 128 Hz with an 11 bits resolution. This
database contains three types of record sets. The first set of 50
records (30 minutes), that comes from 50 subjects with name
beginning with “n”, are without AF. The second set contains
records from 25 different subjects whose names start with “p”:
two 30-minutes and two 5-minutes for each ECG records. Odd
signal identifications without the ’c’ (e.g., p01.dat) represent
the first 30 minutes of signal acquisition, whereas even signal
identifications without the ’c’ (e.g., p02.dat) represent the 30
minutes of ECG just before the onset of AF. Odd signal
identifications with ’c’ (e.g., p01c.dat) represent the ECG after
the first 30 minutes of signal acquisition. Finally, the third
learning set contains 99 records (30 minutes long) whose
names start with “t” [14].

C. Pre-processing

Our goal is to extract characteristics that would allow
identifying the onset of AF over time. For this purpose, in
the pre-processing step, five new databases were constructed
by concatenating the first R peak of the first signal with the
last R peak of the second signal and so on: the first one (db1)

contains all signals (with or without AF); the second one (db2)
contains the ECG signals of 50 records, 110 min before the
onset of AF; the third one (db3) contains the signals, 35 min
before the onset of AF; the fourth one (db4) contains the
signals 30 min before the onset of AF; finally, the fifth one
(db5) contains 5 min of the signals with or without AF. As an
example, for the first patient: the record p01 concatenated to
p01c and p02 represents the signal 110 min before the onset
of AF, p01c concatenated to p02 represents the signal 35 min
before the start of AF, p02 represents the signal 5 min before
the onset of AF. This procedure has been applied to all the
patients. After the pre-processing phase, different steps were
applied on each of the generated datasets, as mentioned below.

III. FEATURE EXTRACTION

A. Wavelet transform

The WT is a transform using a variety of mother wavelets
that decomposes a signal in time and in frequency simultane-
ously. There are two types of WT: the continuous WT (CWT)
and the discrete WT (DWT). The main differences between
the two is that the CWT uses an infinite number of scales and
locations, while the DWT uses particular sets of scales and
locations [13], [15], [16]. In this paper, we applied WT to the
whole ECG signal.

1) CWT: CWT uses mother wavelets as Gaussian, Mexican
hat, Meyer, and other complex wavelets. The CWT of a signal
x(t) is given by:

X(a, b) =
1√
a

∫ +∞

−∞
x(t)× ψ∗(

t− b

a
)dt, (1)

where x(t) is the original signal, * is the complex conjugate
symbol, ψ is the mother wavelet which gets scaled by a factor
of ‘a’ and translated by a factor of ‘b’. The CWT generates a
2D image.

2) DWT and WPD: DWT uses a low pass (h(n)) and a high
pass (g(n)) filter to decompose a signal into detail coefficients
(cD: high frequencies) and approximation coefficients (cA:
low frequencies).
WPD is a generalization of the DWT as it is an orthogonal
linear combination between wavelet functions ψi:

ψi
j,k(t) = 2j/2 × ψi(2jt− k), (2)

where ψi
j,k(t) is a wavelet packet function with three indices: i

represents the modulation parameter, j is the scale parameter,
and k is the translation parameter. The wavelet function ψi is
derived from equations (3) and (4):

ψ2i(t) =
√
2×

+∞∑
k=−∞

h(k)× ψi(2t− k), (3)

ψ2i+1(t) =
√
2×

+∞∑
k=−∞

g(k)× ψi(2t− k), (4)

where h(k) and g(k) are high-pass and low-pass filters,
respectively.
The wavelet packet coefficients, cij,k, which represent the
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Fig. 1. Schema of the proposed methodology

amplitudes at a given time k and scale j for the signal x(t),
are calculated as:

cij,k =

∫ +∞

−∞
x(t)× ψi

j,k(t)dt. (5)

WPD provides a complete level-by-level decomposition of a
signal. Unlike DWT, in WPD cA and cD coefficients will be
decomposed to obtain a high resolution [17].

3) Computed Features: From the wavelet decomposition
results, 37 quantative features were computed, including:

1) The first order statistics that provide information about
the distribution of brightness in images, that were gener-
ated by CWT, such as mean, standard deviation, median,
percentile 25%, 50%, and 75%.

2) The GLCM (the second order statistics) for texture
analysis to capture the spatial dependence of gray level
values that we use on the image generated by CWT. It
defines the occurrence probability of a gray level I1 in
the neighbor of another gray level I2 at a given distance
d and angle θ. The co-occurrence matrix depends on
the d value and θ that takes four directions in degrees
(0, 45, 90, and 135). Then, we compute the GLCM
features (contrast, dissimilarity, homogeneity, energy,
angular second moment, and correlation). Each feature
consists of a vector of four values that were concatenated
to obtain a total vector of 24 features representing the
GLCM features. The six GLCM features computed are
presented as follows :

• The contrast that is a feature measuring the local
level variations and takes high values for high
contrast images

• The dissimilarity that provides a measure of the
randomness of pixels and takes low values if we
have the same pixel pairs

• The homogeneity that is a measure that takes high
values if we have similar pairs of pixels

• The energy features which return the sum of squared
elements in the GLCM

• The angular second moment (ASM) that is used to
measure the smoothness of an image

• The correlation that measures the correlation be-
tween pixels in two different directions

3) The Hu invariant moments that are used in the field
of image pattern recognition, classification, and target
recognition and describe the geometric characteristics
in the images area output of CWT. We calculated seven
Hu invariant moments (h1 to h7).

B. Feature selection: Principal Component Analysis

The purpose of PCA is to condense the information from
a large set of correlated variables into a few variables (the
“principal components”), without loosing much of the vari-
ability present in the dataset [18]–[21]. In this paper, PCA
is used to reduce dimensionality. In the literature related to
ECG analysis, PCA was used for many purposes such as
data compression, beat detection and classification, denoising,
separation signal, and extraction [21], [22].

C. Classification

From the two different feature extraction approaches (CWT
and WPD), a total of 37 features were calculated. These fea-
tures include images from CWT and coefficients from WPD.
These features were reduced by PCA and RF importance. The
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reduced features were next fed into two ML classifier models:
RF and XGBoost.

1) Random Forest: RFs, first used by Breiman, are popular
classification algorithms to handle large amounts of data [23].
These are collections of multiple decision trees. Bootstrap-
aggregated (bagged) decision trees can reduce the effects of
over-fitting and improves generalization by combining the
results of many decision trees.

2) XGBoost: XGBoost is an implementation of extreme
gradient boosting that uses ML decision trees algorithms.
It has a great ability to handle missing data, skewed class
distributions, and large data. Rezaei et al. [24] achieved
87.22%, 88.55%, and 85.95% for F1-score, sensitivity, and
specificity, respectively, to classify ECG into normal and
abnormal signals. Wu et al. [25] achieved an overall accuracy
of 95.12% with intrinsic time scale decomposition, 90.94%
with empirical mode decomposition (EMD), and 87.2% with
WT to classify AF using P-wave and RR interval features.
Derevitskii et al. [26] achieved 87.6% as accuracy to detect
AF. Bao et al. [27] classified arrhythmia heartbeats and used
PCA to choose suitable features. Yue et al. [28] achieved 86%
as accuracy to detect normal rhythms, AF, and other rhythms
using EMD filter.

IV. RESULTS

In all our results, we obtained the best accuracy with deriva-
tion 1. First, the db1 with CWT features achieved an average
accuracy of 74.5% (PCA+RF) and 75.5% (PCA+XGBoost).
The accuracy achieved with the db1 with WPD features
was 98% with both RF and XGBoost classifiers. Then we
combined the CWT and WPD features. Our model achieved an
accuracy of 85.5% with db2 (110 min before AF), 92.5% with
db3 (35 min before AF), 94% with db4 (5 min before AF) and
100% with db5 (with or without AF) with XGBoost. Figure
2 shows the performance of the model trained and tested by
splitting data 25 times in terms of average accuracy and time
(in min) before AF.

Fig. 2. Classification for prediction

Table I presents results in detail. From table II, we analyse
the combinations of characteristics groups extracted from the
signals (the first order statistical, GLCM and the Hu invariant
moments). We obtain the best accuracy with PCA: 91.2% with
XGBoost on derivation0, and 93.3% and 94% on derivation1
with RF and XGBoost, respectively.

V. DISCUSSION

In this study,our goal was to predict FA. For this purpose, 37
features (first and second order statistics and the Hu invariant

TABLE I
ACCURACY PERFORMANCES FOR TWO MODELS (RF AND XGBOOST)

WITH AND WITHOUT PCA FOR ALL FEATURES ON BOTH DERIVATIONS.
DB1 = FIRST DATABASE EXTRACTED ON ALL SIGNALS (WITH OR WITHOUT

AF); DB2= SECOND DATABASE CONTAINING THE SIGNALS 110 MIN
BEFORE THE ONSET OF AF USING CWT; DB3= THIRD DATABASE

CONTAINING THE SIGNALS, 35 MIN BEFORE THE ONSET OF AF; DB4 =
FOURTH DATABASE CONTAINING THE SIGNALS 30 MIN BEFORE THE
ONSET OF AF; DB5 = FIFTH DATABASE CONTAINING 5 MIN OF THE

SIGNALS WITH OR WITHOUT AF.

Accuracy %
Derivation 0 Derivation 1

Without PCA With PCA Without PCA With PCA
RF XGBoost RF XGBoost RF XGBoost RF XGBoost

db1 + CWT 63.7 70.5 63.8 73.7 70.0 72.0 74.5 75.5
db1 + WPD 91.2 92.0 92.5 93.0 98.0 98.0 98.0 98.0
db2 66.6 68.0 67.7 67.7 80.0 82.0 82.5 85.5
db3 60.0 60.0 66.6 60.0 87.7 91.0 90.1 92.5
db4 90.0 80.0 92.0 80.0 93.0 93.3 90.0 94.0
db5 93.0 93.3 90.0 94.0 100 100 100 100

TABLE II
ACCURACY PERFORMANCES FOR TWO MODELS (RF AND XGBOOST)
WITH AND WITHOUT PCA FOR ALL FEATURES ON TWO DERIVATIONS.

Accuracy %
Derivation 0 Derivation 1

Without PCA With PCA Without PCA With PCA
RF XGBoost RF XGBoost RF XGBoost RF XGBoost

Statisticals features 66.0 73.3 53.3 80.0 67.0 76.0 68.0 91.2
GLCM 46.0 60.0 46.6 83.0 78.0 86.0 85.5 92.5

Hu invariant moments 46.7 73.3 66.7 82.0 56.0 72.0 69.0 75.0
Statistical features + GLCM

+ Hu invariant moments 70.0 80.0 75.0 91.2 90.0 93.3 93.0 94.0

moments) were computed from the output of CWT and WPD.
Then PCA was proposed to reduce features dimension. We
evaluated the performance using RF and XGBoost models.

A. Data without PCA
Without PCA, on derivation 1 and using all extracted

features, we reached 90% and 93.3% with RF and XGBoost,
respectively, see Table II. Wu et al. [25], who classified
normal sinus rhythm (NSR) and AF, achieved their best results
with XGboost and achieved an overall accuracy of 95.12%.
Derevitskii et al. [26] used 13 features with XGBoost model
to detect AF; they achieved 87.6% as an average accuracy.

B. Data with PCA
To improve the representation of the features, PCA was also

used to reduce the data. The results of the classification with
the use of PCA were better as confirmed by the metrics of
evaluation: we achieved an accuracy of 93% and 94% for
RF and XGBoost, respectively, on derivation 1 and using all
extracted features, see Table II. As shown in Table III, the
precision, the recall (sensitivity), the accuracy, and the F1-
score are respectively 100%, 86%, 90%, and 92% to classify
AF arrhythmia. Table III shows the confusion matrix of our
model. In the classification results, AF has a higher precision
than normal (+25%), but normal has a higher recall than AF
(+14%).

VI. CONCLUSIONS

This paper focused on the prediction of AF using a fea-
ture engineering classification approach for the whole signal
with a duration of 110 min while other authors made the
prediction for the delays: 30 s, 2 min, 5 min, and 30 min.
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TABLE III
CLASSIFICATION REPORT ABOUT AF AND NORMAL BEATS. SUPPORT IS
THE NUMBER OF OCCURRENCES OF THE GIVEN CLASS IN OUR DATASET;

MACRO AVG IS THE SIMPLE MEAN OF SCORES OF ALL CLASSES;
WEIGHTED AVG IS THE SUM OF THE SCORES OF ALL CLASSES AFTER

MULTIPLYING THEIR RESPECTIVE CLASS PROPORTIONS.

Precision Recall F1-score support
AF 100 86 92 7
Normal 75 100 86 3
Accuracy 90 10
Macro avg 88 93 89 10
Weighted avg 93 90 90 10

Two methods were used for the feature extraction: the CWT
and WPD. In order to reduce the number of features without
affecting the quality of images (output of CWT), we used the
PCA method to select the most important features in ECG
signals. Finally, RF and XGBoost were used as classifiers. All
the analyses were conducted on the publicly available PAF
MIT–BIH database. Based on numerous experimental results,
we achieved an accuracy of 94% for AF prediction, 5 minutes
before onset. In contrast, we obtained 85.5% accuracy for
AF prediction, 110 minutes before onset. These results were
obtained using the XGBoost classifier with feature selection
using PCA. Our results are superior to existing models using
the same dataset. Generalization of our method to other
databases, such as the Long-Term Atrial Fibrillation Database
(LTAFDB), the association for the advancement of medical
instrumentation (AAMI), and other databases is in progress.

REFERENCES

[1] M. R. Fikri, I. Soesanti, and H. A. Nugroho, “ECG signal classification
review,” International Journal of Innovative Technology and Exploring
Engineering (IJITEE), vol. 5, no. 1, pp. 15-20, 2021.

[2] X. Cui, L. Tian, Z. Li, Z. Ren, K. Zha, X. Wei, and C. Peng, “On the
variability of heart rate variability—evidence from prospective study of
healthy young college students,” Entropy, vol. 22, no. 11, article id.
1302, 2020.

[3] G. Halasz, “Predicting the risk of atrial fibrillation: is the machine
learning the answer?,” European Journal of Preventive Cardiology, 2021.

[4] J.G. Guzmana, M. Kotasb, F. Castellsc, S.H. Contreras-Ortiza, and
M. Urina-Trianad, “Estimation of PQ distance dispersion for atrial
fibrillation detection,” Computer Methods and Programs in Biomedicine,
vol. 208, article id. 106167, 2021.

[5] Y. Hagiwara, H. Fujita , S. L. Oh, J. H. Tan, R. S. Tan, E. J. Ciaccio, and
U. R. Acharyal, “Computer-Aided diagnosis of atrial fibrillation based
on ECG Signals: A review,” Information Sciences, vol. 467, pp. 99-114,
2018.

[6] S. Sadaghiyanfam, and M. Kuntalp , “Comparing the performances
of PCA (principle component analysis) and LDA (linear discriminant
analysis) transformations on PAF (paroxysmal atrial fibrillation) patient
detection,” International Conference on Biomedical imaging, Signal
Processing (ICBSP), pp. 1-5, 2018.

[7] M.A. Ozdemir, G.D. Ozdemir, and O. Guren, “Classification of COVID-
19 electrocardiograms by using hexaxial feature mapping and deep
learning,”BMC Medical Informatics and Decision Making, vol. 21, no.
1, pp. 1-20, 2021.

[8] N. Vinter, Q. Huang, M. Fenger-Gron, L. Frost, E. J. Benjamin, and L.
Trinquart, “Trends in excess mortality associated with atrial fibrillation
over 45 years (Framingham Heart Study): community based cohort
study,” British Medical Journal, vol. 370, m2724, 2020.

[9] C. Wu, M. Hwang, T.H. Huang, Y.M Chen, Y.J. Chang, T.H. Ho, J.
Huang, K.S Hwang, and W.H Ho5, “Application of artificial intelligence
ensemble learning model in early prediction of atrial fibrillation,” BMC
Bioinformatics, vol. 22, no. 2, pp. 1-12, 2021.

[10] A. Narin, Y. Isler, M. Ozer, M. Perc, “Early prediction of paroxysmal
atrial fibrillation based on short-term heart rate variability,” Physica A:
Statistical Mechanics and its Applications, vol. 509, pp. 56-65, 2018.

[11] U. Erdenebayar, H. Kim, J.U Park, D. Kang, K.J Lee, “Automatic
Prediction of Atrial Fibrillation Based on Convolutional Neural Net-
work Using a Short-term Normal Electrocardiogram Signal”, Journal of
Korean Medical Science, vol. 34, no. 7, article id. e64, 2019.

[12] S. kusuma, and D. Udayan, “Analysis on deep learning methods for ECG
based cardiovascular disease prediction,” Scalable Computing, vol. 21,
no. 1, pp. 127–136, 2020.

[13] H. Serhal, N. Abdallah, J.M. Marion, P. Chauvet, M. Oueidat, and
A.Humeau-Heurtier, “Overview on prediction, detection, and classifi-
cation of atrial fibrillation using wavelets and AI on ECG,” Computers
in Biology and Medicine, vol. 142, article id. 105168, 2022.

[14] H. Costin, C. Rotariu, and A. Pasarica, “Atrial fibrillation onset pre-
diction using variability of ECG signals,” IEEE, Computer science, 8th
international symposium on advanced topics in electrical engineering
(ATEE), pp. 1-3, 2013.

[15] S.B. Shuvo, S. N. Ali, S. I. Swapnil, T. Hasan, and M. I. H. Bhuiyan,
“A lightweight CNN model for detecting respiratory diseases from lung
auscultation sounds using EMD-CWT based hybrid scalogram,” IEEE
Journal of Biomedical and Health Informatics, vol. 25, no. 7, pp. 2595-
2603, 2020.

[16] T. Li, and M. Zhou, “ECG classification using wavelet packet entropy
and random forests,” Entropy 2016, vol. 18, no. 8, article id. 285, 2016.

[17] E. Alickovic, and A. Subasi, “Medical decision support system for
diagnosis of heart arrhythmia using DWT and random forests classifier,”
Journal of Medical Systems, vol. 40, no. 40, pp. 1-12, 2016.

[18] V. Gupta, and M. Mittal, “Arrhythmia detection in ECG signal using
fractional wavelet transform with principal component analysis,” Journal
of The Institution of Engineers (India): Series B, vol. 101, no. 5, pp.
451-461, 2020.

[19] V. Gupta, and M. Mittal, “R-peak detection in ECG signal using
Yule–walker and principal component analysis,” IETE Journal of Re-
search, vol. 67, no. 6, pp. 921-934, 2021.

[20] Y. You, W. Chen, and T. Zhang, “Motor imagery EEG classification
based on flexible analytic wavelet transform,” Biomedical Signal Pro-
cessing and Control, vol. 62, article id. 102069, 2020.

[21] L.F. da Silva, J. A. Queiroz, C. Vanessa, A. K. Barros, G. C. Lopes,
and L. Cabral, “Separation method of atrial fibrillation classes with high
order statistics and classification using machine learning,” In proceedings
of the 14th international joint conference on biomedical engineering
systems and technologies (BIOSTEC 2021), vol.4: Biosignals, pp. 284-
291, 2021.

[22] L. Zhao, J. Li, and H. Ren, “Multi domain fusion feature extraction and
classification of ECG based on PCA-ICA,” 2020 IEEE 4th Information
Technology, Networking, Electronic and Automation Control Confer-
ence (ITNEC 2020), vol. 1, pp. 2593-2597, 2020.

[23] W. Yang, Y. Si, D. Wang, and G. Zhang, “A novel method for identi-
fying electrocardiograms using an independent component analysis and
principal component analysis network,” Measurement, vol. 152, article
id. 107363, 2020.

[24] M. J. Rezaei, J. R. Woodward, J. Ramı́rez, and P. Munroe , “A novel two-
stage heart arrhythmia ensemble classifier,” Multidisciplinary Digital
Publishing Institute (MDPI), Computers, vol. 10, article id. 60, 2021.

[25] X. Wu, Y. Zheng, C. Chu, and Z. He, “Extracting deep features
from short ECG signals for early atrial fibrillation detection,” Artificial
Intelligence in Medicine, vol. 109, article id. 101896, 2020.

[26] I. V. Derevitskii, D. A. Savitskay, A.Y. Babenko, and S. V. Kovalchuk,
“Hybrid predictive modelling: Thyrotoxic atrial fibrillation case,” Journal
of Computational Science, vol. 51, article id. 101365, 2021.

[27] J. Bao, “Multi-Features Based Arrhythmia Diagnosis Algorithm using
XGBoost,” 2020 International Conference on Computing and Data
Science (CDS), pp. 545-457, 2020.

[28] Z. Yue and Z. Jinjing, “Atrial fibrillation detection based on EEMD and
XGBoost,” Journal of Physics: IOP Conference Series, vol. 1229, no. 1,
article id. 012074, 2019.

1192


