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Abstract—Diagnosis of autism spectrum disorder (ASD) in
children is often achieved by estimating the amplitudes and
latencies of visual event-related potentials (ERPs). This requires
accurate detection of desired ERPs, in our case P1 and N170,
which are sensitive to visual stimuli. We aim to develop a hybrid
of tensor factorization (TF) and singular spectrum analysis (SSA)
to detect these components from electroencephalograms (EEGs)
and restore the inherent noise and artifacts. The application
of single-channel SSA to the detected sources by TF results in
the removal of brain beta activity considerably enhancing the
accuracy. The ERP parameters (amplitudes and latencies) are
automatically estimated and applied to a decision-tree classifier
leading to 100% accuracy.

Index Terms—Autism Spectrum Disorder, Decision Tree, EEG,
Emotions, Event-Related Potentials, Singular Spectrum Analysis,
Tensor Decomposition

I. INTRODUCTION

Electroencephalography (EEG) is a neurophysiological
functional screening technique that records brain electrical
activity in real-time and non-invasively. Each EEG electrode
signal is the sum of a large number of neuronal sources,
modeled as dipoles, emitted from the cortex and other brain
zones [1]–[4]. These signals are often contaminated by wide-
band noise, blinking and movement artifacts, and in our
case, undesired cortical activities. Therefore, it is essential
to preprocess the EEG signals before continuing with their
analysis. Although methods such as blind source separation are
effective in removing EEG artifacts, there are often undesired
sources that are correlated (or overlap) with the desired ones
in space, time, or frequency [5], [6].

One of the topics that have received major attention in
characterizing the EEG is the event-related potentials (ERPs).
Their research includes face processing, mainly for a develop-
mental approach to studying disorders such as Autism Spec-
trum Disorder (ASD). This is a neurodevelopmental disorder
characterized by the presence of behavioral alterations, in-
cluding qualitative impairment in social interactions, language,
and communication, as well as a restricted range of activities
presented with repetitive and stereotyped patterns [7], [8].

ASD individuals show deficits in face perception owing
to abnormal face processing strategies caused by perceptual
abnormalities, such as a locally oriented rather than global
visual analysis, or more complex alterations of the social
brain network. Further, the impaired face perception in ASD
individuals could also underpin social interaction difficulties
[9].

Due to this, the main ERPs used to study the face processing
disability in ASD individuals are P1 and N170 since they
are related to visual stimuli. The P1 component is a positive
deflection located in occipital areas that reaches its maximum
peak around 100 ms approximately. It reflects systematic
differences to any visual stimulus, whether faces or objects
[10]. The N170 component is a negative deflection recorded
from electrodes over the occipital-temporal cortex that peaks
at approximately 170 milliseconds and are better observed in
adults [11]. Also, this component has been used as a marker for
the specialized neural and perceptual mechanisms associated
with the early stages of face processing, recognition, and
identification of faces resulting from visual stimuli [12]–[15].

In some studies, it has been reported that the latency and
amplitude of both ERPs, P1, and N170, decrease with age.
This is mainly, in control children of 3 to 5 years old. For these
children, the latency can increase from 260 to 291 ms and the
amplitude decrease from -6 to -5 µV [16]. In children of 6 to
9 years old the latency and amplitude vary respectively from
200 to 250 ms and -6 to 1 µV. In children from 10 to 11 years
of age, they vary respectively from 180 to 250 ms and from -3
to -2 µV. Finally, in adolescents from 12 to 15 years old, these
change respectively from 160 to 200 ms and from -7 to -3 µV
[16]–[19]. These values have been estimated using face and
object recognition tasks. Also, during such trials, it has been
documented that the control children, faced with faces rotated
180◦, have longer latency in their N170 and P1 components.
However, in ASD children this pattern has not been observed,
but the N170 latencies are longer than those in control children
[16]–[20].

In terms of data classification, some studies have tried to
find EEG features for diagnosing ASD based on emotions or
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resting state. They are using mainly the power spectral density
(PSD) and multiscale entropy (mMSE). Applying different
classifiers such as artificial neural network (ANN), support
vector machines (SVM), random forest machine, K-contractive
map (K-CM), and k-nearest neighbors (KNN), they have
obtained accuracies between 87.3 and 92.8% [21], [22].

In the following, we propose a method based on singular
spectrum analysis (SSA) to remove beta rhythm due to at-
tention and tensor decomposition to separate and characterize
the ERPs from the rest of the independent artifacts, such as
blink eye, motion, or noise. Furthermore, we demonstrate how
to select the components and calculate the ERP parameters
and the most discriminating features for the classification of
autistic and control. We organize the paper as follows: In
section II, we give a brief introduction to SSA and tensor
decomposition. In section III, we describe our approach to
automatic selection of components and the features extraction
related to the ERPs, including the experimental setup, and
finally discuss the results in section IV.

II. SSA AND TENSOR DECOMPOSITION

A. SSA

SSA is a nonparametric technique that decomposes a time
series into a set of summable components that can be grouped
and interpreted by their trend, periodicity, and noise. Mainly,
it emphasizes the separability of the underlying components,
since periodicities occurring on different time scales can be
easily separated, even in very noisy time-series data. This
means the original time series is recovered by adding all
its components, therefore, it can be used to analyze and
reconstruct a time series with different components while
rejecting the undesired components [23]–[26].

The SSA consists of four steps, the first two related to the
decomposition and the last ones to the reconstruction. The first
one constitutes the construction of the trajectory matrix. Let
F = (f0, f1, ..., fN−1) be a time series of length N , and L
be an integer, the window length. We set K = N −L+1 and
define the L-lagged vectors Xj = (fj−1, ..., fj+L−2)

T , j =
1, 2, ...,K, and the trajectory matrix, well known as Hankel
matrix X = (fi+j−2)

L
i,j=1,K = [X1 : ... : XK ].

The second step is the singular value decomposition (SVD)
of the matrix X , which can be obtained via eigenvalues and
eigenvectors of the matrix S = XXT of size L × L. With
this, we obtain a representation of X as a sum of rank-one
biorthogonal matrices Xi(i = 1, ..., d), where d(d ≤ L) is
the number of nonzero singular values of X . Projecting the
time series onto the direction of each eigenvector yields the
corresponding temporal principal component (PC).

In the third step, we split the set of indices I = 1, ..., d
into groups I1, ..., Im and sum the matrices Xi within each
group, obtaining: X =

∑m
k1

XIk , where XIk =
∑

iϵIk
Xi.

Finally, in the fourth step, we perform the averaging over the
diagonals i + j = const of the matrices XIk , giving an SSA
decomposition, which is a decomposition of the original series
F into a sum of series fn =

∑m
k=1 f

(k)
n , n = 0, ..., N − 1,

where for each k the series f
(k)
n is the result of diagonal

averaging of the matrix XIk [23], [24], [26].
Considering that each eigenvalue is equal to the variance

of the signal in the direction of the corresponding PC, only
the largest eigenvalues belong to the signal and the smallest to
the noise [24]. Also, in the eigenvalue pattern, any two equal
size adjacent eigenvalues represent a periodic component in
the mixed signal. To filter our time signal, we discard all the
PCs that correspond to eigenvalues beyond 95% of the total
variance of the signal. Eigenvalue λi is selected if i is less
than L:

L = argmin
a

{∑a
i=1 λi∑l
i=1 λi

> 0.95

}
(1)

Then, we remove the undesired beta frequency component
together with other artifacts by detecting its corresponding pair
of equal amplitude eigenvalues.

B. Tensor Decomposition

A tensor is an extension of a higher-order matrix that can
be indexed by an arbitrary number of indices. According to
this, the goal of tensor decomposition is to obtain a compact
representation of the tensor. There are mainly two types of
tensor decompositions, CANDECOMP/PARAFAC (CP) and
Tucker, which can be considered higher-order generalizations
of matrix singular value decomposition (SVD) and principal
component analysis (PCA). The idea of CP decomposition is
to convert the tensor into a sum of rank-one components, while
the Tucker decomposition can be viewed as a generalization
of the CP decomposition, where the core matrix is not para-
diagonal. However, Tucker decomposes the tensor into a small
core tensor and factorial matrices, thus generating a core
tensor with the same order as the original tensor and a list of
projection matrices, one for each mode of the original tensor.
Nevertheless, the CP decomposition is the most frequently em-
ployed decomposition technique mainly because the solution
is unique. For a three-dimensional tensor, the CP model is
defined as:

χ ≈
R∑

r=1

ar ◦ br ◦ cr (2)

where ◦ is the outer product R is the rank of the model,
quantifiying the latent features extracted, and ai, bi, ci are
the three loading vectors (Fig. 1) [27], [28].

Fig. 1. The principle of CP decomposition for a three-dimensional tensor
[27], [28].

The disadvantage of CP decomposition is the need for a
priori information on the decomposition rank R, however,
this can be set equal to the number of expected components
(factors) in the signal, in our case, equal to 4. In the following,
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we will therefore introduce an approach to automatically
remove motion artifacts from the EEG and select the ERP
components based on readily measurable signal statistical
characteristics.

III. ALGORITHM

We aim to characterize the EEG signal of children with
ASD through an emotion test. Because of this, we apply
CP decomposition to extract ERP-related features, SSA to
remove the undesired brain activities and artifacts and find the
amplitude and latency measures of P1 and N170. Fig. 2 depicts
the entire process which is done automatically as explained in
more detail below.

Fig. 2. Framework for the estimation of ERPs using CP decomposition and
SSA method.

A. Experimental setup and data acquisition

We used the SynAmps RT to record 180s data at 1000
Hz sampling frequency from eight children, four with ASD
and four healthy while attending an emotion test that contains
128 visual stimuli, 64 faces, and 64 balls. Each stimulus
lasted 850 ms and between each of them, there was a fixation
cross with a duration of 866.66 ms (Fig. 3). The test was
shown individually in a silent room while 19 electrodes were
located according to the 10-20 standard electrode placement
system. This test protocol was evaluated by an ethics com-
mittee and was approved with the number CONBIOÉTICA
30CE100120180131, also the parents and children signed
informed consent.

B. Tensorization

Before applying CP decomposition, EEG needs to be trans-
formed into a tensor. In the first step, we grouped the round
and oval faces and did the same for the objects. Then, we
created epochs per stimulus considering 100 ms previous and
500 ms after it, obtaining 128 epochs in total. With this
information, a three-dimensional tensor was created for faces

Fig. 3. Emotion test. Presentation scheme and duration of stimuli for ERP
N170. (Data from the Laboratorio de Psicobiologı́a).

and objects and was made up of the dimensions: channel, time,
and trial (Fig. 4). With that, the CP decomposition can explore
spatial, temporal, and spectral (across trials) correlations in the
data to find the ERPs features.

Fig. 4. Tensorization: constructing a tensor per stimulus, considering 64 trials,
19 channels and times from -100 ms to 500 ms.

C. Filtering

Major contributors of artifacts most detected in EEG record-
ing are eye movement-related artifacts, cardiac signals, the ten-
sion of the facial, jaw, or body muscles, and body movement.
These signals have a frequency range of around 0.5-40 Hz,
making it difficult to separate them from our signal of interest
because of spectral overlap [29].

All independent or disjoint artifacts such as noise, eye
blinks, and muscle artifacts are removed from multichannel
EEGs by tensor factorization in a similar way to independent
component analysis. After the CP decomposition, we used the
SSA method to remove the beta activity due to attention and
remaining artifacts from the time components. Considering
that an appropriate window length L is a compromise between
computational cost and decomposition quality, and each col-
umn vector of the trajectory matrix has to include at least
one cycle of the periodic source with the lowest frequency
of interest, the lower bound for L is 50 and we set L = 100
so that two cycles of each existing periodic components are
included.

D. Automatic selection of components and signal reconstruc-
tion

Knowing that our ERPs of interest are generated in the
posterior brain area and have a specific signature, we design
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an algorithm to select the component automatically. For this
purpose, to verify that the component is in the posterior area
we select the spatial components of P3, P4, T5, T6, O1, and
O2 electrodes and calculated the mean value per component.
All components that have a mean value higher than zero are
added to a vector (SEs). To find the signature related to the
ERPs, P1, and N170, we select the segment from 70 to 350 ms
of all temporal components and search for the max and min
values per each one. The same as in the previous criterion,
the number of components that have their max value between
70 and 175 ms and their amplitudes are higher than 15µV
are added to a vector (Smax), and those with their min value
between 180 and 350 ms, and an amplitude lower than -21
µV to another vector (Smin). The only component selected is
the one that meets all the three criteria (Fig. 5).

Considering the uniqueness of CP decomposition, we mul-
tiply the time and spatial component arrays and choose the
selected component in the previous step to visualize the ERPs
in the channels of interest (Fig. 6). Also, we find the amplitude
and latency of P1 and N170 automatically in the last stage.

Fig. 5. Automatic ERP selection algorithm.

Fig. 6. Example of ERPs calculated for a control child.

IV. RESULTS

Fig. 7 clearly shows the low efficiency of the conventional
band-pass filter (0.5 - 50 Hz) in removing the beta band

signal superimposed on the the signal, which did not allow an
accurate selection of the ERPs, and consequently a comparison
of the classifiers could not be made. Conversely, in the same
figure, the effectiveness of SSA can be observed, which
allows a more accurate selection of the ERPs and parameter
estimation. Then, using the SSA, we combine all the cases per
group and calculate the amplitude and latency of P1 and N170
for each electrode (P3, P4, T5, T6, O1, and O2). Also, we
evaluate both measures per hemisphere obtaining 33 attributes
related to faces and 33 to objects, 66 attributes in total. Table
I illustrates the results of our proposed method. Although
no statistically significant differences were found between
groups, we observed that the latency of P1 and N170 in ASD
children is less for faces and more for objects than in control
children and demonstrated no differences in response between
the two brain hemispheres. However, in terms of amplitude,
ASD children showed higher values when visualized faces and
lower for objects in P1, and lower values in N170, mainly
in the right hemisphere for both stimuli. In addition, control
children showed higher P1 amplitude in the right hemisphere
for faces and to objects in the left hemisphere, and lower
N170 amplitudes in the left hemisphere for faces and the right
hemisphere for objects.

With this information, we evaluate the performance of the
decision tree classifier to identify an ASD case with the ERPs.
When using the 66 attributes, faces, and objects, we obtained
only 33% of correctly classified instances. However, with the
33 object attributes, we achieved 100% accuracy.

Fig. 7. Filtering: basic filtering and SSA method compare

V. CONCLUSION

Traditionally, The EEGs are averaged over trails for ERP
detection. This ignores the ERP variability for different tri-
als. In this work, we have proposed to use the CANDE-
COMP/PARAFAC (CP) decomposition to extract features re-
lated to the ERPs. Besides, we found that the SSA method as
a powerful single-channel decomposition technique can com-
pletely remove the effect of beta frequency due to attention.
The combination of these two approaches allows for more
accurate ERP detection and automation of autism diagnosis.
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TABLE I
P1 AND N170 ERPS RELATED TO FACES AND OBJECTS PER ELECTRODE.

Group Stimuli Electrodes
ERPs

P1 N170
Amp
(µV)

Lat
(ms)

Amp
(µV)

Lat
(ms)

ASD

Faces

O1 43.4

135.5

-19.1

260.8

O2 48.3 -19.2
T5 39.1 -19.8
T6 44.6 -19.5
P3 18.8 -16.8
P4 27.6 -17.8

Objects

O1 23.2

119.5

-29.1

234.0

O2 28.0 -31.9
T5 15.7 -26.6
T6 26.1 -31.4
P3 3.1 -17.6
P4 14.5 -23.4

Control

Faces

O1 32.5

122.3

-12.1

244.0

O2 42.1 -12.2
T5 30.1 -15.2
T6 29.7 -8.8
P3 11.6 -6.3
P4 15.8 -6.3

Objects

O1 53.9

131.0

-16.6

248.3

O2 44.6 -17.6
T5 40.2 -15.0
T6 28.2 -14.5
P3 11.8 -8.4
P4 12.6 -9.8

Amp: Amplitude, Lat: Latency.

Even with the limited number of cases in our study, our results
coincide with those reported in other studies.

In terms of classification, a decision-tree classifier was
selected due to the diversity in the number of features for dif-
ferent subjects and different stimuli obtaining a good accuracy.
However, nonlinear classifiers, such as deep learning methods
may cater to even more diverse applications. In comparison
with other approaches in autism classification, stated in the
Introduction section, our approach outperforms the existing
techniques.
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