
sEMG feature extraction using Generalized Discrete
Orthonormal Stockwell Transform and Modified

Multi-Dimensional Scaling
Somar Karheily, Ali Moukadem, Jean-Baptiste Courbot, Djaffar Ould Abdeslam
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Abstract—This paper proposes a method based on a general-
ized version of the Discrete Orthonormal Stockwell Transform
(GDOST) with Gaussian window to extract features from surface
electromyography (sEMG) signals in order to identify hand’s
movements. The features space derived from the GDOST is then
reduced by applying a modified Multi-Dimensional Scaling (MDS)
method. The proposed modification on MDS consists in using
a translation in kernel building instead of the direct distance
calculation. The results are compared with another study applied
on the same dataset where usual DOST and MDS are applied.
We achieved significant improvements in classification accuracy,
attaining 97.56% for 17 hand movements.

Index Terms—sEMG classification, GDOST transform, MDS
dimension reduction

I. INTRODUCTION

The loss of a limb has a big impact on the life of a person,
as it affects the ability of doing daily activities. The number
of amputees in the world is estimated to be 57 million living
people with a limb amputation due to a trauma [1]. Many
research and work were done to develop prosthetic that replace
some functionalities with many challenges, such as the degree
of freedom (DOF), accuracy and design. The main parts in
prosthetic are the acquisition unit, processing unit, and the
moving parts. Currently, most of the prosthesis use the surface
electromyography (sEMG) signals to identify the intended
move of the amputee [3]. The sEMG signals are widely used
in clinical upper-limb prosthetic control as they are noninvasive
and relatively easy to measure. Typically, the amplitude of
sEMG signals ranges from 50 µV to 10 mV and the frequency
range is between 20 Hz and 500 Hz [4].

In this paper, we use a generalized version of the Discrete
Orthonormal Stockwell Transform (DOST) that we refer to as
GDOST to extract Time-Frequency (TF) domain features of the
sEMG signals, and then we use the Multi-Dimensional Scaling
(MDS) method to reduce the features dimension. We optimize
the kernel calculations of this method, which significantly
improves the classification accuracy measured by using a K
Nearest Neighbor (kNN) classifier.

A. Related Work

Because sEMG signals are non-stationary, the use of TF
features is more relevant as they preserve the variance of the
frequency over the time which could be distinctive property of
patterns in sEMG.

The related works in sEMG classification area show that TF
features overcome the Time Domain (TD) features as we see
by looking on different studies applied to the same data. In [5]
different sets of TD features were applied on a 17-gestures-
dataset and the average accuracy using kNN classifier were
85%. In a previous study, using the same dataset [10], we also
proposed using TF methods and the results obtained exceeded
90% for two TF methods: Short-Time Fourier Transform
(STFT) and Stockwell Transform (ST), exceeding thus the
outcomes of TD features while working on the same dataset
and classifier than in [5].

The STFT [7] is a TF transform which divides the signals
into shorter segments of fixed length and then calculates the
Fourier transform on each of it. STFT then determines the local
frequency content of the signal which varies over the time.
STFT was successfully used to extract sEMG features with
good results. In [8] STFT with a Gaussian window was used
on a dataset containing 17 movements and the average results
of the classification was 92% using kNN and SVM classifiers.
In [23], the STFT was used with the deep learning, where its
spectrogram images have trained with 50-layer Convolutional
Neural Network (CNN) based on Residual Networks (ResNet)
architecture and the test accuracy was 99.59% for 7 different
hand gesture.

Stockwell Transform (ST) improves the STFT by using
a multi-resolution Gaussian window. Unlike the STFT, the
Gaussian window in ST changes its width over frequencies.
The ST is successfully used for features extraction for sEMG
as in [9], where the classification accuracy of 6 different
movements was 98.12%.

The calculation complexity in TF methods makes it hard to
apply them in real prosthetic due to the required response time
restrictions. We also applied the DOST in sEMG classification
in our previous study [10] which was 10 times faster than
STFT and ST but with a lower classification accuracy (88.08%,
instead of 90.05% for STFT and 90.96% for ST).

The TF features yield a fine data representation, but lie
in high dimension, making necessary the use of dimension
reduction method. The most known method is the Principal
Component Analysis (PCA) [11]. In [12] PCA was used with
wavelet packet transform features and the classification accuracy
for 9 hand movements was 96%. Different studies used also
non-linear dimension reduction methods with TF features as
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in [13] which compared PCA to Diffusion Maps (DM) and
showed that DM outperforms PCA when less training data is
used.

B. This Paper

The purpose of this paper is to improve the accuracy of
DOST and MDS combination when classifying sEMG signals
in order to take advantage of:

• the time-efficiency of DOST,
• the reduced amount of training data required when using

non-linear dimension reduction methods.
These improvements were achieved by:

• Using GDOST with a Gaussian window instead of the
classical DOST which is equivalent to apply a rectangular
window.

• Improving the kernel of MDS to better present the
dissimilarities between the observations.

In the remaining of the paper, section II details these improve-
ments and the numerical experiments are reported in section III,
while section IV concludes the study.

II. METHODS

The sEMG signals we consider is recorded on several
channels (electrodes), and each movement is repeated several
times. As first step, we normalize this recorded signals by
making the mean value is equal to 0 and the standard deviation
is 1 on each channel. Then all signals are stored into one matrix
S. The second step is to segment this data into observations,
where each observation is the recorded sEMG signals on each
channel in a specific time range. This yields m windows
of signals for this observation, where m is the number of
channels. For an observation X , X = {x1, x2, ..., xm}, where
X ∈ Rm×a, xi ∈ Ra is the signal recorded on electrode i. and
a is the number of samples in this signal.

A. DOST and GDOST

The DOST is the orthonormal version of the ST. It avoids
redundancy in the time-frequency plane and paves the way to
compute time-frequency representation in lower algorithmic
complexity [16]. Let f(t) be a signal ∈ L2([0, 1]), p is the
number of the frequency bands, ν indicate the center of a
frequency band, β indicates the width of the frequency band
and τ for the time localization. The DOST coefficients fp,τ
can be calculated from an inner product between the signal
f(t) and the basis functions Dp,τ :

fp,τ =< f,Dp,τ > (1)

where Dp,τ is given as [15]:

Dp,τ (t) =
1√
β(p)

ν(p)+β(p)/2−1∑
f=ν(p)−β(p)/2

e2πifte−2πifτ/β(p), t ∈ R

(2)
The basis Dp,τ is not equivalent to the classical ST with

Gaussian window. Indeed as R.G. Stockwell pointed in [16] this
is equivalent to ST with boxcar window. In order to propose
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Fig. 1: DOST representation (left), and its GDOST counterpart
of the same movement. Both are rearranged to yield a TF
representation. In this figure and in the following, depictions
cover a 250ms window length.

a generalized version of the DOST that allows to apply an
admissible generalized window φ, authors in [20] propose the
following basis for the GDOST:

Eφ
p,τ (t) =

1√
β(p)

β(p)−1∑
j=0

[
cφp,j(ν(p))

]−1
e2πi(β(p)+j)(t− τ

β(p) )

(3)
For the special case φ = χ̌ which corresponds to boxcar

window, the authors [20] proved that :

Eχ̌
p,τ = Dp,τ (4)

In this paper, we propose to use a Gaussian window as
originally used in the ST with σ = 0.1. In this case, φ = g(t)
which can be given as:

g(t) =
1

σ
√
2π

e
−t2

2σ2 . (5)

An example of DOST and GDOST on the same signal is given
in Fig. 1.

B. Feature extraction from GDOST

For an observation X recorded on m channels: X =
{x1, x2, ..., xm}. The GDOST transform of this observation is
represented as:

GDOST (X) = {Fx1 , Fx2 , ..., Fxm}, (6)

where Fxi is the GDOST transform of xi.
The GDOST yields a number of features equals to the number
of the samples in the signal, so that ∀i ∈ {1, ...,m}, Fxi

∈ Ra,
This means that the features number of observation X on all
channels will be K = m× a.
We extract the GDOST features for every observation in the
dataset S, so that the features matrix of the all observations
in the dataset is F ∈ RN×K , where N is the overall existing
observations in the dataset.

C. Multidimensional Scaling (MDS)

MDS [18] replaces the observations’ features by a new set
of features measuring the dissimilarities between each pair of
observations [17]. The steps of MDS are [18]:

• From the features matrix F , we calculate the paired
distances which will be the MDS kernel matrix D. For
two movements X and Y , their features are represented

1199



as: {Fx1
, Fx2

, ..., Fxm
}, {Fy1

, Fy2
, ..., Fym

} The paired
distances between these two observations (X,Y ) will be
calculated as:

dxy =

m∑
i=1

∥Fxi − Fyi∥2 (7)

• From D, we compute the distance matrix A, which rep-
resents the Euclidean distances between the observations,
so that ∀i, j ∈ {1, . . . , N}: aij = − 1

2d
2
ij .

• Then we apply double centering: B = HAH , where H
is the centering matrix, i.e. H = I − 1

N 1N1TN with 1N a
vector of ones of size N .

• A spectral decomposition of B is performed, such that
B = VΛVT , where Λ is the diagonal matrix which has
eigenvalues of B, and V contains the eigen-vectors.

• Finally, the embedded features matrix Z is:

Z = VqΛ
1
2
q (8)

where q is the number of embedded features. We choose
q ≪ K, so that the embedded features still have the intrinsic
characteristics, and the less-related or redundant features are
removed.

D. Distance synchronization

The Euclidean distances in MDS are sensitive to the time
shift in GDOST features, which leads to erroneous dissimilarity
calculations (Eq. 7), while better dissimilarity calculations
should consider the relative positions of the energy in the time-
frequency plane. To achieve that when calculating the distance
between X and Y , we shift features of Y step-by-step and
calculate the distance after each shifting.

Let the operator T jF be the circular shift with step j ∈ Z
on the sequence of features F . Then, the distance between X
and Y is taken as the minimal distance between Y and shifted
versions of X . The proposed operation can be expressed as
follow:

dxy = min
j∈{0,...,a−1}

m∑
i=1

∥(T jFxi
)− Fyi

∥2 (9)

The final distance matrix is D ∈ RN×N , will contains all
paired distances dxy .

This optimization improves the dissimilarities calculations
between pairs making them shift-invariant.

E. Main Algorithm

The main steps of our algorithm are the following:
• Normalization, so that the raw data have a 0-mean and a

unitary standard deviation.
• Data segmentation. We divide the data on each channel

into fixed-size windows. An observation of a movement
consists of m windows (one window on each channel):
X = {x1, x2, ...., xm} where xm ∈ Ra.

• TF features extraction. For each observation, we calculate
the GDOST transform. The output of this step (Eq. (6))
will contains features of all observations represented as

Normalized sEMG S

GDOST MDS k-NN

Movement’s class

F ∈ RN×K Z ∈ RN×q

Fig. 2: Main algorithm overview.

Fig. 3: Visual depiction of the 17 hand gestures considered in
our study, based on the NinaPro database [19]

F ∈ RN×K , where N is the number of all observations
in the dataset, and K is the total number of TF features
for each observation: K = m× a.

• Dimension reduction. By applying the MDS with our
enhancement on the kernel calculations (Eq. (9)), we
reduce the dimension of F ∈ RN×K from previous step,
into Z ∈ RN×q where q ≪ K.

• Classification. We use k-fold cross-validation and kNN
as a classifier to evaluate our methods.

In Fig. 2, we can see the main steps of our work.

III. NUMERICAL EXPERIMENT

A. Data

We use the public database from the Ninapro Project [19]
as it provides many kind of movements recorded on many
different subjects. These signals are saved in unified format that
simplifies the testing on different subjects and different datasets.
We apply our methods on the dataset 2 - exercise 1, which
contains raw sEMG data for 17 different basic movements of
fingers and wrist, depicted in Fig. 3.

The subject is asked to perform the movement for 5 seconds
followed by 3 seconds of rest, then repeating that 6 times. The
sampling rate is 2 kHz and the number of electrodes is m = 12.
Fig 3 shows the list of these movements. For segmentation,
we chose the window length equal to 250 ms with a 125 ms
overlap between windows.

B. Feature extraction

The features we used in our work is the TF features
calculated using GDOST. As we have 12 channels in our used
data, that leads to 12 signals for each observation; therefore
The GDOST features are computed and combined from all
these signals. Fig. 4 shows the GDOST transform of two
different movements on the same channel.

The window length we used is 250ms, and sampling rate
in the used database is 2kHz, which means we have a = 500
samples for each window on each channel, and we have m = 12
the number of channels; therefore an observation X will have
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(b) Move 7, channel 1
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(c) GDOST of move 3, channel 1
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(d) GDOST of move 7, channel 1

Fig. 4: GDOST transform example for two different movements
(3 and 7, see Fig. 3) acquired on the same channel.

500× 12 = 6000 samples in total. Applying GDOST on this
observation on all channels will give K = 6000 features as
TF features that represent this movement. The total number of
features for each movement is high and needs to be reduced
to remove redundancy and avoid classification over-fitting.

C. Dimension Reduction

We apply distances’ synchronization between observations
pairs to get better dissimilarity representations. The Fig. 5
shows GDOST representations of two different observations of
the movement 9 recorded on channel 1. In Fig. 5a, and Fig. 5c
we notice that calculating the distance directly between these
two observations (Eq. 7) would lead to high dissimilarity as
shown in Fig. 5b, while distance between GDOST in Fig. 5a
and Fig. 5d will be the minimum value of distance (Eq. 9)
between these observations and actually reflects the fact that
they both represent the same movement. Fig. 5b shows how
the distance between these two observations differs while
performing circle-shift on the time resolution. We can notice
that the minimum distance happens with shift value equal to
210 time-sample, as shown in Fig. 5b as a red point, and the
corresponding GDOST shifted transform could be seen in
Fig. 5d.

We choose the number of feature q (see Eq. 8) that yields
the maximum classification accuracy on our database over the
range [10, 400], which is q = 191. The classification accuracy
will start to drop as adding more features will just increases
the classifier’s over-fitting.

After we finish calculating the synchronized paired-distances
between each pair of observations, we get the kernel matrix
of MDS, which contains the new features of each observation
as a vector of distances from other observations.

In order to evaluate our features extraction methods and
dimension reduction approach, we used kNN classifier with
k = 3, with a 5-Fold cross-validation.
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Fig. 5: The figure shows GDOST(X0) in (a). (c) shows
GDOST(X1) without any shifting and (d) shows GDOST(X1)
with circle-shifting by value 210. (b) shows the distances
between GDOST(X0) and GDOST(X1) while shifting X1.

Methods Accuracy Reference
TD features set, kNN 85% [5]
RMS, Median Frequency,
Para-consistent artificial neural network 76% ± 9.1% [6]

STFT, SVM, kNN 92% [21]
ST, PCA 90.96% [10]
DOST, MDS 87.13% [10]
DOST, Enhanced MDS 96.73% this study
GDOST, Enhanced MDS 97.56% this study

TABLE I: The classification accuracy of different feature
extraction and dimension reduction combinations done on the
same database and same movements. The table shows the
significant improvement of using GDOST and enhanced MDS.

D. Results and Discussions

We applied our methods (Fig. 2) on 5 different subjects. The
average accuracy achieved was 97.56%. We chose the same test
subjects as in study [10] with the same classification methods in
order to perform an accurate comparison and evaluation for our
improvements. In [10], DOST with MDS gave 87.13% accuracy,
which means by using enhanced MDS kernel and GDOST,
we were able to increase the accuracy by 10%. Comparing
with the best results obtained on the same database in [10]
which was achieved by using ST with PCA with accuracy
90.96%, we notice that our methods improved the accuracy by
6.6%. By comparing DOST and GDOST when both are applied
with enhanced MDS, we see that using the GDOST led to
improving the accuracy from 96.73% to 97.56%. The significant
improvement obtained by these combination (GDOST and
enhanced MDS) came from the MDS kernel optimization, so
the distances were calculated in a way that actually measure the
dissimilarity between observations, besides to using Gaussian
window instead of rectangle window in DOST, which improved
the TF features of the observations. Table I summarize these
results, compared with other studies made on the same database
and with the same number of movements.
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IV. CONCLUSION

In the framework of sEMG classification, we improved the
accuracy of DOST for feature extraction, and of MDS as
a non-linear dimension reduction method. The importance
of this comes from the fact that DOST is a time-efficient
TF transform, besides to improving MDS kernel calculations
to be more suitable to the TF features. Further works will
generalize these improvements to other non-linear dimension
reduction methods, promoting their use as they perform better
over smaller training sets, and they also better presents the
cross-subject features [13]. Also, the parameter of the Gaussian
window of the GDOST can be optimized based on a criterion
equivalent to the energy concentration measurement [22]. This
might further improve the quality of the TF features.
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