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Abstract—In healthcare applications, retraining models for
new users often require collecting many labeled data, which is
challenging and expensive in these types of applications, such
as atrial fibrillation detection. Unsupervised and self-supervised
techniques have emerged as promising methods to deal with the
scarcity of labeled data. Contrastive learning is a recent technique
that aims to improve model accuracy by a pre-trained process
with unlabelled data. In this work, we propose the implementa-
tion of contrastive learning to improve the performance of a CNN
that classifies atrial fibrillation in scenarios with few labeled data,
small models, and noisy data. The strategy was evaluated in the
most extensive public ECG dataset. We present results regarding
the F1-score for a different amount of unlabeled-labeled data
and different model sizes. The results suggest that our strategy
outperforms the baseline strategy up to 30% of the 10-fold mean
F1-score compared to an improvement of 5.8% AUC in the state
of the art.

Index Terms—Atrial Fibrillation, Contrastive Learning, Con-
volutional Neural Networks, Data Augmentation, ECG Signals,
Self-Supervised Learning.

I. INTRODUCTION

A cardiac arrhythmia is a disorder that arises when the
heart’s electrical impulses do not work correctly, which in
the worst cases can lead to a stroke, heart failure, or sudden
death [1]. Atrial fibrillation (AFib) is the most common
sustained arrhythmia in clinical practice and is responsible for
high mortality, morbidity, and increased healthcare costs. This
disease is characterized by irregular and disordered atrial beats,
resulting in a quick and irregular heart rhythm [2].

Heartbeats can be detected by ECG signals, which can be
processed to detect and classify many heart diseases [3]. A
case in point is proposed to diagnose COVID-19 using ECG
data with deep learning. Due to COVID-19, many cardiovascu-
lar changes caused by this disease can be classified as cardiac
arrhythmias. It is relevant to consider that COVID-19 cannot
be considered the complete cause of these cardiovascular
complications but may reveal underlying conditions or worsen
them [4].

Deep learning techniques applied to the ECG signals have
allowed the development of models capable of detecting and
classifying cardiac arrhythmias [5]. However, these techniques
require a considerable amount of labeled data. In state of the
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art, ECG datasets such as Chapman [6], Cardiology [7], Phys-
ionet 2017 [8], and Physionet 2020 [9] have been employed for
cardiac arrhythmia detection. Recently, Icentia11k [10] shows
up as the largest public Afib database, which has a substantial
amount of noisy one-lead ECG signals.

On the other hand, self-supervised learning has proven to be
a learning technique that involves finding good representations
from unlabeled data, taking advantage of easy access to this
type of data. A case in point is contrastive learning [11], in
which the learning process consists of the similarity between
two transformed inputs (A and B) from the same instance
by the data augmentation process. The model has to predict
if A and B come from the same data (positive pairs) or
not (negative pairs), thus requiring only the data on its own
without any label. The authors of contrastive learning remark
on the importance of multiple data augmentation to obtain
an efficient representation. Recently, CLOCS (Contrastive
Learning of Cardiac Signals Across Space, Time, and Patients)
[12] proposes the implementation of a family of contrastive
learning methods applied to ECG signals that work across
space, time, and patients making the representation similar to
each other. Their approach learns representation without the
use of a projection head, as seen in [11].

In addition, Patient Contrastive Learning [13] proposes an-
other type of contrastive learning applied to ECG signals. They
present a pre-training approach known as Patient Contrastive
Learning of Representations (PCLR). Positive pairs are defined
from samples belonging to the same patient and collected at
different time-lapses. In this work, we deal with the implemen-
tation of contrastive learning in challenging situations, which
involve few labeled data, small models, and noisy signals.
Facing this situation provides insight into finding feasible
models to implement in wearable devices. Due to the explosive
growth of interest, the number of IoT devices has increased
dramatically in recent years [14]. For this reason, having small
models with good performance is essential.

The rest of this work is ordered as follows: Section 2
describes the employed dataset. Section 3 explains the con-
trastive learning method and details the network structure
to implement the method. Subsequently, section 4 describes
the data augmentation applied to ECG signals and shows
the procedure of the contrastive learning pre-training method.
Finally, in sections 6 and 7, we conclude the results.

1218ISBN: 978-1-6654-6798-8 EUSIPCO 2022



5 [mV]

-5 [mV]

Normal

Arrhythmias

Noise

C
la

ss
es

0                                     500                                 1000                                 1500          2000

Fig. 1. Data processing. The classes we use for classification are normal,
arrhythmia and noise. Also, we limit the range of the signal.

II. DATASET

We use the largest public ECG dataset of continuous
raw signals for representation learning, the Icentia11k [10].
This dataset contains one-lead ECG signals recorded from
11 thousand patients using the CardioSTATTM [15] device.
For each patient, 3 to 14 days are recorded at frame-level
(approximately 8 seconds) with a sample rate of 250Hz and
a size of 2049 samples. This raw data can capture features of
the beat and the rhythm. The dataset is classified according
to beat type into Normal, Premature Atrial Contractions,
and Premature Ventricular Contractions. Also, the dataset is
classified by rhythm type in: NSR (normal sinus rhythm), AFib
(atrial fibrillation), Aflutter (atrial flutter), and Noise.

In this work, each labeled data was tagged according to
[16] as NSR (Normal Sinus Rhythm) (1), Arrhythmia Afib
and Aflutter (2), or Noise (3). It contains 57%, 4%, and 39%,
respectively. Also, we filtered the raw data (Fig. 1) limiting
the signals between 5 [mV] and -5 [mV] (range of cardiac
signals) [17].

We use two different signal lengths depending on the
process. For the training process, we employ K-signals of
2048 samples called single labeled data. On the other hand,
for the pre-training process, we use M-double unlabeled data,
referring to signals of 4096 samples. This length difference
allows us to apply time transformations. As shown in Fig. 2,
we ensure that both single and double data come from separate
sets of the training dataset to avoid using the same patients on
each stage.

III. METHODS

A. Constrastive Learning

Constrative learning (CL) is a self-supervised method that
aims to learn useful representations of instances that share

Double data
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Dataset ICENTIA 11K

Single data

9.000 patients 2.000 patients

K-ECG signals M-ECG signals

50%25% Test data

Fig. 2. Dataset distribution. After raw data processing, we divide the dataset
into training and testing. From the training set, we extract the single and
double data.
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Fig. 3. Contrastive learning applied to ECG signals. Representations are
obtained by passing the single ECG signal through the encoder and the
projection layers. Finally, representations for positive pairs are encouraged
to be similar to one another and dissimilar to representations of all other
signals.

some context. This method is based on three main aspects: a
learning network structure, a set of transformations according
to the type of data, and a contrastive loss function.

CL model comprises two parts: an encoder and projection
layers. In the pre-training stage, the encoder is the convolu-
tional network that learns to extract representations from the
input data. Then, projection layers process these representa-
tions, and the contrastive loss in 1 is applied as shown in Fig.
3. An important fact about using non-linear projections layers
is explored in SimCLR [11]. They conjecture that adding these
layers helps the representations learn valuable information
about the data.

The set of transformations generates multiple augmented
views of the same instance, called positive pairs. On the other
hand, views of different instances are defined as negative pairs.
Finally, the contrastive loss function in equation 1 learns the
outputs of the projection layers to be similar for positive pairs
and dissimilar for negative pairs.

Fig. 3 illustrates a specific case in which the data come from
ECG recordings. In the medical field, physiological recordings
from the same patient collected on small time scales and sim-
ilar scenarios are likely to share context. Therefore, positive
pairs for ECG recordings could be obtained by applying time
division and adding noise to the same signal.

B. Network architecture

We use as encoder the proposed model in [18] that is used
to detect AFib (Fig. 4). This model allows us to change the
model size by modifying the size of the initial convolutional
filter. The encoder does not include the classification layer.

In addition, we build a projection layer [11] that has an
input size given by the length of the encoder’s output. This tiny
neural network consists of 2 dense layers with a corresponding
number of units defined as width. On the other hand, the
linear probe layer is created to perform the classification task.
These final layers are composed of a dense layer with 128

1219



Input

Convolutional

Batch normalization

ReLu

Convolutional

Batch normalization

ReLu

Dropout

Convolutional

Max pooling

Batch normalization

ReLu

Convolutional

Batch normalization

ReLu

Dropout

Convolutional

Average pooling

Max pooling

x N

Batch normalization

ReLu

Flatten

Encoder 

Flatten

Dense width

Dense

Flatten

Width layer 

Linear probe layer Projection layer

Width layer 

Fig. 4. Model architecture. From [18], we use an N of 13 and several values
for the initial filter size to change the model parameters.

neurons (dense width) and a dense layer with three neurons
(classification layer) as shown in Fig. 4

C. Data augmentation.

Data Augmentation (DA) is one approach for limited data
in deep learning applications. This method adequately imple-
mented is a critical factor that enables us to get good rep-
resentations. Overall, CL has been developed in the imaging
domain. Since progressively, more results have been obtained
in the DA characteristics of the images. The results are in-

Batch 1

Batch size x signal length x 2

Contrastive batch generation

Batch of double signals

Batch of simple signals for contrastive training

Batch 2

Contrastive batch

Noise (σ = 0,05) Noise (σ = 0,03)

Fig. 5. Batch generation for contrastive. Two batches are created from each
double data batch by dividing each signal into two equal segments. The first
batch contains the first half samples, and the other has the remaining of each
signal. The two mini-batches have added different Gaussian noises. Then, the
batches are then concatenated.

tended to be repeated on data of different dimensionality. State
of the art has explored ways to create similar performance by
applying DA on temporal signals like ECGs.

In this work, based on [12], [13] and [19], the DA is
performed applying time-division (split in two) and Gaussian’s
noise (different standard deviations for each transform) as
shown in Fig. 5. Considering the dimensionality (one-lead)
of the icentia11k signals, and therefore cannot generate DA
in multiple leads. For that reason, we need to use data with
double training data for pre-training to allow time transforma-
tions. We create the contrastive learning batch as illustrated in
Fig. 6.

D. Pre-training stage.

We conduct our experiments in two main stages illustrated
in Fig. 6. For the pre-training process 1, we include two
dense layers of 128 neurons. These layers are used for the
projection. We use a scheduled learning rate starting at 0.01
and early stopping callbacks for the training. First, we perform
the encoder pre-training employing contrastive learning. Then,
we apply a classification task to evaluate the initialization
introduced by the pre-training. We conduct this procedure as
follows:

• We take M-signals from the unlabeled double data (Fig.
1) to build the contrastive batches of a selected batch size
as shown in Fig. 5.

• We take the contrastive batches to pre-train the encoder
with the projection layers. From [11], we use the normal-
ized temperature-scaled cross-entropy loss with τ = 0.1
as the temperature parameter. The loss function works
by maximizing the similarity between the positive pair’s
projections. In 1, the loss function of a i, j positive pair

1Codes available in https://github.com/karena2/CL-for-1-D-ECG.git
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Fig. 6. Procedure for contrastive learning implementation. M-signals are
drawn from the double dataset to generate the contrastive batches used to pre-
train the encoder. Then, taking K-signals from the single dataset, the encoder
and the linear probe layer are trained to perform the classification task.

of signals is shown, where z indicates the outputs of the
projection layers, and N refers to the contrastive batch
size [13]. The final loss is calculated for the N-positive
pairs for each contrastive batch.

ℓi,j = − log
exp [sim (zi, zj) /τ ]∑2N,s̸=i

s=1 exp [sim (zi, zs) /τ ]
(1)

Where sim corresponds to the cosine similarity.
• The contrastive metrics are the contrastive loss and accu-

racy.

E. Training stage.

The training process uses the Sparse Categorical Cross-
entropy loss function and the Adam optimizer with default
parameters. We use a scheduled learning rate starting at 0.001
and early stopping callbacks for the training.

We conduct this procedure as follows:
• Once the pre-training stage is completed, we take the pre-

trained encoder and append the linear probe layer to it.
Finally, we train the encoder using K-signals from the
single data, as shown in Fig. 6.

• The classification metrics are the loss and F1-score.

IV. RESULTS

We train several models and calculate the F1-score, which
is the harmonic mean of the precision and the recall. The F1-
score is ideal for unbalanced datasets. Also, we use Stratified
data 10-Folds to calculate the mean and the standard deviation
of the results. We run the simulations on Tesla V100 SXM2
GPUs. For both processes, pre-training and training, we set a
batch size of 256 ECG signals.

Fig. 7 shows results regarding the amount of labeled data,
unlabeled data and model size. Labeled data ranges between
5k (Fig. 7(a)), 10k (Fig. 7(b)), and 15k (Fig. 7(c)) ECG
signals. We also use three models with different amount of
parameters: M1 (orange), M2 (blue), and M3 (red). These
values correspond to 66k, 250k, and 1M of parameters. The
unlabeled data ranges between 0, 20k, 25k, 50k, 100k, and
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(a) 5k labeled data.
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(b) 10k labeled data.
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(c) 15k labeled data.

Fig. 7. Graphs of F1-score results by changing unlabeled data.

200k. The zero value indicates that the model has random
initialization, i.e., there is not pre-training process.

In Fig. 7(a), note a significant improvement in the mean F1
score when using CL compared to random initialization with
few labeled data. Furthermore, our results suggest that 15k of
unlabeled ECG signals can achieve better results.

Meanwhile, Fig. 7(b) shows similar behavior The results
obtained by applying CL decrease the standard deviation in
big models with more labeled data. However, Fig. 7(c) shows
that the use of a large amount of unlabeled data does not show
any improvement for large models.

On the other hand, tests varying the depth of the projection
layer in the pre-training stage did not show enhanced results,

1221



TABLE I
COMPARISON TABLES ABOUT IMPROVEMENT WITH DIFFERENT AMOUNT OF LABELED DATA AND DATASETS

[a]

Method Training dataset Labeled data Test data AUC-Random Initialization AUC-Contrastive initialization AUC-mean improvement
CLOCS Cardiology [7] ∼3k ∼1k 0.669 ± 0.007 0.708 ± 0.017 5.8%

Physionet 2017 [8] ∼5k ∼6k 0.738 ± 0.014 0.770 ± 0.012 4.6%
Physionet 2020 [9] ∼16k ∼16k 0.766 ± 0.005 0.801 ± 0.013 4.3%

[b]

Method Training dataset Labeled data Test data F1-Random Initialization F1-Contrastive initialization F1-mean improvement
Ours Icentia 11k [10] ∼5k ∼465k 0.459 ± 0.053 0.601 ± 0.071 30.5%

∼10k 0.627 ± 0.077 0.763 ± 0.024 21.6%
∼15k 0.742 ± 0.060 0.803 ± 0.010 8.1%

giving similar values despite the changes. Likewise, freezing
the encoder when performing the classification task showed
unfavorable results; since the models tends to stabilize at a
value of F1-score significantly lower than the average obtained
by random initialization.

V. DISCUSSION

Deep learning applied to medical ECG datasets with few
labeled training signals presents challenges. CL can use un-
labeled data, which are easier to obtain, to compensate for
the scarcity of labeled data. Our research focuses on the CL
implementation at scenarios to use in portable devices with
few labeled data, noisy data, and small models.

Table I shows a comparison between our method and
CLOCS [12] methods. We use a percentage of improvement
in the F1 score referenced on the random initialization. Note
that our work presents an improvement compared to CLOCS
in nearby conditions. However, we know that the standard
deviations are high in most of our results. This high deviation
could be that we use the larger test set with a significant
amount of noisy signals.

The 1-D data has proved to be a challenge in the context
of CL. This type of data reduces the number of possibilities
in DA, which is important to improve the learning in the pre-
training stage.

Our results suggest that increasing the amount of labeled
data or the model size reduces the impact of our method. On
the other hand, our results also suggest that the amount of
unlabeled data used in pre-training determines the success of
the implementation technique. To find the optimal amount of
unlabeled data is necessary to get the best performance of
contrastive learning.

VI. CONCLUSION

This work covers different scenarios to perform deep neural
network training for cardiac arrhythmia detection using the CL
method. We found that CL improves the F1-mean in small
models with few labeled data, which are better for deploying
portable devices. However, bigger models and many labeled
data do not show the best conditions for our method.
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