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Abstract— Since last 2 decades, High Frequency Oscillations 

(HFOs) are studied as a promising biomarker to localize the 

epileptogenic zone of patients with refractory focal epilepsy. As 

HFOs visual detection is time consuming and subjective, 

automatization of HFO detection is required. Most HFO 

detectors were developed on invasive electroencephalograms 

(iEEG) whereas scalp electroencephalograms (EEG) are used in 

clinical routine. In order HFO detection can benefit to more 

patients, scalp HFO detectors has to be developed. However, 

HFOs identification in scalp EEG is more challenging than in 

iEEG since scalp HFOs are of lower rate, lower amplitude and 

more likely to be corrupted by several sources of artifacts than 

iEEG HFOs. The main goal of this study is to explore the ability 

of deep learning architecture to identify scalp HFOs from the 

remaining EEG signal. Hence, a binary classification 

Convolutional Neural Network (CNN) is learned to analyze 

High Density Electroencephalograms (HD-EEG). EEG signals 

are first mapped into a 2D time-frequency image, several color 

definitions are then used as an input for the CNN. Experimental 

results show that deep learning allows simple end-to-end 

learning of preprocessing, feature extraction and classification 

modules while reaching competitive performance.  

Keywords— Epilepsy, High-Density Electroencephalogram 

(HD-EEG), High Frequency Oscillations, HFO, Convolutional 

Neural Network (CNN) 

I. INTRODUCTION 

Epilepsy is a one of the most chronic neurological disorder 
concerning around 50 million patients worldwide. While 
current treatments are efficient to control seizures in a large 
majority of the patients, around 20 to 30% patients are 
pharmacoresistant. Some of those refractory epilepsies are due 
to brain lesions that can be resected to make the patient 
seizure-free. When epilepsy surgery is considered, an accurate 
localization of the brain region responsible for seizures 
(epileptogenic zone - EZ) is required. However, localizing the 
EZ is a real challenge because it does not always fit 
completely with the lesion. Therefore, several biomarkers of 
the EZ are studied since several years: the seizure onset zone 
(SOZ), the interictal epileptiform discharges (IEDs) and, 
recently, high frequency oscillations (HFOs) [1]. HFOs are 
brief events (between 15 to 100 ms) with regular small-
amplitude oscillations within frequency range from 80 Hz to 
500 Hz clearly distinguishable from background [2]. Until 
now, most of the studies focused on HFOs detected on 
invasive EEG recording using subdural or depth electrodes 
implanted in the brain regions selected as potential EZ. The 
potential source localization search is thus restricted to 

predefined brain regions leading to a spatial bias because it is 
impossible to sample all the brain regions using intracranial 
electrodes. In the last decade, it has been shown that HFOs can 
also be detected on scalp EEG [3], [4], allowing a non-
invasive and affordable approach that is more applicable 
clinically and thus can benefit to more patients.  

A recent review of HFO detection from scalp EEG [5] 
confirms that these events are of interest for EZ source 
localization, diagnosis and prognosis of epilepsy, especially in 
the pediatric population. In most of the studies focusing on 
scalp HFO detection, recording is performed using 19 
electrodes placed according to the international 10–20 system 
[5]. Due to a poor spatial resolution, HFOs detected with this 
system can result in wrong EZ localization [7]. This pitfall can 
be solved by using High Density Electroencephalogram (HD-
EEG) recording with 64 to 256 electrodes covering the whole 
scalp, making source localization based on HFOs more 
accurate [6]. So far, only few studies reported scalp HFOs 
using HD-EEG [6]–[8] with, for most of them, limited number 
of electrodes (70 to 128) and low sampling rates (500 Hz or 
600 Hz) bordering  HFOs to 170 Hz according to Nyquist-
Shannon theorem. To tackle these issues, 256 electrodes nets 
and 1 kHz sampling rate were used in the current study.  

Considering HFO detection, the visual one remains the 
gold standard, generally performed on EEG displayed on a 
one second window, with 10 to 20 electrodes on raw signal 
and / or Pass Band signal [9]. Due to low amplitude and short 
duration of HFOs, visual detection requires expertise, is 
subjective and time consuming (estimated 10 hours for 10 
minutes of EEG signal on 10 electrodes) [10]. Considering the 
large number of electrodes and the duration of EEG records, 
full visual HFO detection cannot be considered. This is even 
worse for visual detection of HFOs from the scalp, which is 
much longer, error-prone, and more difficult than detection of 
invasively recorded HFOs. Indeed, scalp EEG signals suffer 
from skull EEG mitigation, artifacts and eye or muscle 
movements. Thus, development of efficient automatic scalp 
HFO detectors is required.  

As the first step of detection is a good classification, this 
study explores the ability of deep learning architecture to 
identify scalp HFOs from the remaining EEG signal. In the 
following, we will give a brief review of existing detectors in 
section II. Materials and proposed methods are detailed in 
section III.  Section IV presents experimental results. 
Discussion is given in section V, and section VI brings the 
paper to a close and set the stage to future studies. 
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II. STATE OF THE ART 

Since 2002, HFO detection in iEEG was widely studied in 
1D domain (time or frequency domain) and more recently in 
2D time-frequency (TF) domain. Most of the methods used a 
long pipeline to detect HFOs. This pipeline consists of artifact 
rejection, filtering, feature engineering (like calculation of 
root mean square (RMS) [9], short-term energy [11], short-
term linear length [12], complex Morlet wavelet transform 
[13], wavelet transform of the mother wavelet [14] or Hilbert 
transform [15]), then features selection and eventually a 
classification step that rejects false detection (artifacts and 
IEDs). Recent studies perform feature extraction using 
supervised or unsupervised machine learning techniques [16]. 
Very few methods were proposed to automatically detect 
HFOs from scalp EEG [17]–[21]. Most of them are extensions 
of iEEG HFO detectors, are semi supervised and requires 
definition of threshold(s). In [21] and [19], the automated 
short-term energy detector was used as presented in [22]. HFO 
detection was then done according both RMS standard 
deviation threshold and peak standard deviation threshold. 
The team working on [17] used the invasive HFO detector 
presented in [23] which is based on the instantaneous 
Stockwell transform power spectrum. They used amplitude 
threshold to find HFOs. [18] developed a non-accurate semi-
automated method looking for HFOs co-occurring with 
spikes. The method consists in computing six features derived 
from Hilbert transform and thresholding each of them to select 
potential HFOs. A visual review was then needed to reject 
false detections and add missing ones. The only scalp HFO 
detector without need for threshold definition is reported in 
[24] using a semi-supervised k-means algorithm followed by 
a mean shift algorithm to classify suspected HFOs. 

To overcome all these drawbacks, we propose here an 
automatic classification between HFOs (from 80 Hz to 500 
Hz) and EEG signal segments outside this frequency range 
(non HFOs) based on time-frequency maps and deep learning. 
Our method doesn’t require any threshold definition, no 
distinction is performed between Ripples (frequency within 
80 to 250 Hz band) and Fast Ripples (frequency ranged 
between 250 and 500 Hz). 

III. MATERIAL AND METHODS 

A. HD-EEG recording 

Three epileptic patients followed in Department of 
Pediatric Neurology, Centre Hospitalier Universitaire, 
Angers, France, were prospectively enrolled between May 
and July 2020. Inclusion criteria were age under 18 years, 
pharmaco-resistant focal epilepsy (more than 2 treatments 
properly administered ineffective on seizures), occurrence of 
at least one seizure per day, and epileptogenic lesion visible 
on MRI. After informed consent signed by one parent, HD-
EEG was recorded using HydroCel Geodesic Sensor Net with 
256 electrodes density connected to Net Amps 400 series 
amplifiers (Electrical Geodesic, Inc., Eugene, OR, U.S.A.) 
with interconnected electrodes and the Cz electrode as a 
reference. Long term monitoring sensor nets were used to 
obtain high-quality data during up to 24 hours. The net was 
carefully adjusted so that Fpz, Cz, Pz and the pre-auricular 
points were correctly placed according to the international 
10/20 system. Then each electrode was filled with Elefix 
paste. Electrode-skin impedances were maintained at <50 KΩ. 
EEG was recorded using EGI's Net Station with 1 kHz 
sampling rate and 0,1 Hz High Pass filter. Approximatively 18 

hours of continuous HD-EEG combined with video were 
recorded for each patient in the awake and sleep states. 

B. HFOs Visual Detection 

Thirty minutes EEG segment was selected during video 
confirming sleep. HFO annotation was performed visually by 
two experts on raw EEG signals. One second per page signals 
were considered on a 10-20 montage referring to Cz electrode. 
Every oscillatory event with minimum 3 regular oscillations 
clearly distinguishable from background, and frequency 
above 80 Hz was marked as HFO without distinction between 
Ripples and Fast Ripples. Selected events were then high-pass 
filtered and mapped in time-frequency domain to confirm 
visual detection on raw EEG as presented in Fig. 1. Electrode, 
start time, end time and duration of each HFO were registered. 
Within each electrode, EEG segments non-belonging to HFOs 
were considered Non HFO (NHFO) zones. NHFO zones may 
contain artifacts, IEDs, low frequency brain activities, 
background EEG, etc.  

C. Preprocessing 

Preprocessing was performed with Matlab Software. For 

each electrode, EEG signal was normalized and high pass 

filtered using a 30 order Butterworth Finite Impulse Response 

filter with 80 Hz cutoff frequency. For each HFO, 150 ms 

EEG signal centered on the middle of the event was converted 

to time-frequency maps using Short Time Fourier Transform 

as shown in Fig. 1. TF mapping was also applied on NHFOs; 

150 ms segments randomly selected from NHFOs zones. 

Images sized 875×656 pixels were obtained and then 

cropped to eliminate white outlines and resized to 256×256 

pixels. Each image was decomposed over the 3 color 

channels resulting in 5 sets of images: RGB containing 

images with the 3 red, green and blue channels, R, G and B 

containing grayscale images with respectively red, green or 

blue channel only and HSV converting RGB images into Hue 

(the color), Saturation (the greyness) and Value (the 

brightness). An example of HFO TF maps for each color set 

is presented on Fig.2.  

 
Fig. 1. Top: One second raw EEG signal: blues lines point out a 150 ms 

time interval centered on HFO1; 2nd line: focus on selected time interval, 
electrode 37: blues lines marked beginning and end of HFO1; 3rd line: HFO1 

on 80 Hz High Pass data; Bottom: HFO1 TF map 
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D. CNN Architecture 

The next step consists in classifying TF maps images 

between HFOs and the remaining signal using a binary 

Convolutional Neural Network (CNN). CNN are designed to 

accurately recognize visual patterns directly from pixel 

images with minimal preprocessing [25]. CNN architectures 

are designed with the following 6 types of layers: 

1) The input layer receives all the images. Each pixel of 

a 2D image is considered as a neuron. Mathematically, 

images can be represented as a tensor with 3 dimensions:  

 dim(𝑖𝑚𝑎𝑔𝑒) = (𝑛𝐻 , 𝑛𝑊, 𝑛𝐶) () 

with nH and nW respectively the size of height and width and 

nC the number of color channel(s). Our images sized 256×256 

pixels and, depending the color set, contains 3 color channels 

for RGB and HSV and only one for R, G and B. 

2) The convolutional layers apply filters on their input 

data in order to detect features of interest. A filter corresponds 

to a concatenation of multiple kernels which are small 2D 

matrices containing weights. The kernel is a squared matrix 

of dimension f×f. The filter adds a third dimension 

corresponding to the number of color channels. Indeed, the 

dimension of a filter is  

 dim(𝑓𝑖𝑙𝑡𝑒𝑟) = (𝑓, 𝑓,  𝑛𝐶). () 

Each kernel matrix is slid across the input image and 

multiplied with the scanned part of the image. The sum of this 

elementwise multiplication corresponds to the cross-

correlation between the image and the filter resulting in a 2D 

matrix. Thus, given an image I and a filter K, the cross-

correlation equation for the coordinate output cell (x, y) is:  

(𝐼 օ 𝐾)(𝑥, 𝑦) = ∑ ∑ 𝐾(𝑖, 𝑗) × 𝐼(𝑥 + 𝑖 − 1, 𝑦 + 𝑗 − 1).
𝑓
𝑗=1

𝑓
𝑖=1   () 

The output matrix size is: 

 dim(𝑜𝑢𝑡𝑝𝑢𝑡) = (𝑛𝐻 − 𝑓 + 1, 𝑛𝑊 − 𝑓 + 1, 𝑛𝐶).  () 

In our CNN, 3 convolutional layers were used with 

respectively 16, 32 and 64 filters of (3, 3) kernels.  

3) The maxpooling (MP) layers extract the maximum 

value from the region covered by the sliding filter on the 

feature maps generated by the convolutional layers. It reduces 

the spatial size of the representation and thus the number of 

computations and avoid over fitting. Our model uses a MP 

layer of (2, 2) kernel size after each convolutional layer.  

4) The flatten layer stacks the values of the feature 

matrices output from the last maxpooling layer and provides 

a feature 1D matrix as input to the following layer. At this 

stage the features extraction part of the CNN is completed. 

5) The dense layer is a perceptron neural network 

responsible for the classification part of the CNN. Each 

neuron is fully connected to all output neurons. After 

receiving an input vector, this layer applies a linear 

combination and then an activation function with the final 

aim to classify the input image. It returns as output a vector 

of size corresponding to the number of classes in which each 

component represents the probability for the image input to 

belong to a class. Our model uses a 500 neurons dense layer. 

6) The output layer is a layer fully connected to the 

previous one. It receives the result of the CNN in as many 

neurons as classes. Our output layer has 2 neurons.  

For convolutional, dense and output layers an activation 

function has to be defined to switch on or not each neuron. 

Several non-linear activation functions can be used. In our 

CNN, the Rectified Linear Unit (ReLU) function was applied 

on convolutional and dense layers whereas a Sigmoid 

function was used to activate the output layer. 

Mathematically, ReLU function is expressed as:  

 𝑓(𝑥) = max (0, 𝑥).  () 

Sigmoid function corresponds to: 

 𝑓(𝑥) =  
1

1+𝑒−𝑥 . (6) 

Fig.3 summarizes the CNN architecture used in our study 

leading to a total of 28 825 086 trainable parameters. Other 

models were tested using a different CNN architecture (3 

convolutional layers with respectively 64, 32 and 16 filters 

giving 7 226 382 trainable parameters) or other activation 

functions (Leaky ReLU for convolutional layers and SoftMax 

for output layer). The results of those models were not 

reported because they were lower than the ones presented. 

E. Training and testing CNN 

TF maps were randomly resampled into 3 different 

datasets: 64% for training, 16% for validation and 20% for 

testing. Training of the CNN model was performed on the 

training set images. Each TF map belonging to this dataset 

 
Fig. 2. Top: HFO1 TF map in RGB and HSV color map; Bottom: HFO1 

TF map decomposed respectively to red (R), green (G) and blue (B) channel. 

 
Fig. 3: Detail of the Convolutional Neural Network model used to classify HFO / NHFO 
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was processed by batches of 20 images in 10 epochs unless 

early stopping if loss accuracy does not improve after 4 

epochs. Number of steps by epoch corresponds to the number 

of samples divided by the number of batches. In case of early 

stopping, model weights are restored from the end of the best 

epoch. Validation dataset was used to compute the accuracy 

and the loss of the model at each epoch. Performance metrics 

were evaluated on test dataset from the best epoch of the 

classification model. In order to check the robustness of our 

model, 12 runs on as much different random selections of 

images in the training, validation and test datasets were 

performed. Machine learning was executed using mostly 

TensorFlow and Keras packages in Colab, a Google cloud 

service, based on Jupyter Notebook and intended for training 

and research in machine learning. 

F. Performance metrics 

In order to ensure model quality, the following metrics 

were calculated: 

• Recall or sensitivity (Se) measuring true positive rate:  

  𝑆𝑒 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑁)⁄ , (7) 

• Precision or Positive Predictive Value (PPV):  

 𝑃𝑃𝑉 =  𝑇𝑃 (𝑇𝑃 + 𝐹𝑃)⁄ , (8) 

• Specificity (Spe) corresponding to true negative rate: 

  𝑆𝑝𝑒 =  𝑇𝑁 (𝑇𝑁 + 𝐹𝑃)⁄ , (9) 

• F1-score measuring model ability to properly predict 
HFOs in term of both precision and recall. It 
corresponds to harmonic mean between precision and 
recall:  

 𝐹1𝑠𝑐𝑜𝑟𝑒 =  𝑇𝑃 [𝑇𝑃 + 0.5 × (𝐹𝑁 + 𝐹𝑃)]⁄ . (10) 

In (7) to (10), true positive (TP) refers to the visually marked 

HFOs recognized by the CNN model, false positive (FP) 

corresponds to TF maps classified HFOs but not visually 

marked, false negative (FN) are visually marked HFOs missed 

by the classifier and true negative (TN) refers to NHFOs 

properly classified by the model. 

IV. EXPERIMENTAL RESULTS 

Our dataset of 5182 images equally spread between HFOs 

and NHFOs was randomly separated in 1036 images in Test 

set and 4146 images for model learning subdivided in 3318 

images in the training set and 828 in the validation set equally 

distributed between the 2 classes as shown in Fig.4. 

Means and standard deviations of metrics resulting from the 

12 runs are summarized in table I by set of images. Model 

trained on HSV color space and blue channel returns lower 

results than the other color sets. Whereas models running on 

3 dimensional RGB images and on greyscale images on red 

or green channel returns very good precision, recall and F1 

score ranging from 81% to 86% with low variability (from 

1% to 5%). Specificity is higher and more robust for RGB 

images (86%±2%) than for the other color sets. 
 

V. DISCUSSION 

We show here that CNN with 3 convolutional layers can 

be considered as an efficient classifier discriminating HFOs 

and NHFOs TF maps presented as RGB or red grayscale 

images. Results on green channel are mitigated. While results 

obtained with RGB and R color definitions seem very 

promising, conversion of TF images to HSV color space and 

blue channel seems less interesting.  

On several HFO classification studies performed on 

iEEG, recalls are very close to our results: [26] reported 

87.4% sensitivity with a 2 steps traditional machine learning 

process. Similarly, authors of [27], used a CNN preceded by 

Short-Time Energy to extract features. They reported 88.16% 

recall for Ripples and 93.37% for Fast Ripples. Since EEG 

signals we studied were recorded using 1 kHz sampling rate, 

most of HFOs we detected are more likely to be Ripples or 

not very high frequencies Fast Ripples. Thus, when 

comparing to  iEEG Ripples recall reported in [27], we 

obtained similar performance using all color sets except blue. 

Precision (88.67%) and F1 score (89.95%) reported in this 

latter study are also similar to our RGB results. Another iEEG 

HFO detection study using CNN [28] obtained 77.04% recall 

for Ripples and 83.23% recall for Fast Ripples, which are 

lower than our results on all color sets except blue one.  

Very few studies were done on scalp EEG. We will 

compare our results to studies that reported performance 

metrics for HFO automatic detection. Only 68.2% sensitivity 

was reported on [24] whereas 55%±15 % sensitivity was 

calculated on 3 patients in [21]. It is worthy to note that our 

results are much more robust to variability than those of [21]. 

Results obtained in our study are hence comparable to the 

ones resulting from iEEG studies and better than existing 

scalp HFO automatic detection. Moreover, our model is 

simple using a single step for feature extraction and 

classification and with signal preprocessing limited to 

normalization, High Pass filtering and time-frequency maps 

TABLE I. METRICS SUMMARY (MEAN ± STANDARD DEVIATION) 

 RGB R G B HSV 

Precision 86%±2% 83%±3% 81%±4% 81%±2% 79%±4% 

Recall 85%±3% 86%±3% 85%±5% 81%±3% 85%±5% 

Specificity 86%±2% 82%±4% 80%±6% 81%±3% 77%±6% 

F1-score 85%±1% 84%±1% 83%±2% 81%±1% 82%±2% 
 

 
Fig. 4 Resampling images into training, validation and test datasets. 
Dashed boxes correspond to directories containing TF maps resized images 
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generation. Considering that our HFO classification was 

performed on scalp EEG with a more tedious detection due 

to lower signal intensity and more artifacted signals, results 

obtained are very promising. Moreover, results on RGB (3 

channels) and R images are good, which means that 

computation time can be significantly reduced using only one 

color channel. Since our NHFO events were randomly 

selected, we are confident that they are representative of all 

kind of activities recorded in scalp EEG and that results will 

remain competitive when extending our detection on the 

whole electrodes. 

VI. CONCLUSION  

Our main contribution is to prove that CNN model for 

feature extraction and classification gives interesting metrics 

on scalp EEG HFO identification running much faster than 

visual detection. If working on HSV colored images and blue 

channel are not conclusive, metrics resulting from all others 

color sets are comparable to results obtained for iEEG HFO 

detection. Further analyses and models need to be tested 

using red and green channels in order to obtain an even better 

detection. Other deep learning models will be explored on 1D 

EEG signal in order to avoid time-frequency mapping. 

Moreover, once we get an efficient HFO automatic detector, 

we will compare EZ delineated by HFOs with the ones 

defined with IEDs and seizures. 
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