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Abstract—Acquiring knowledge of the dynamics and proper-
ties that force each protein into a unique secondary structure is
highly important in medicine and biotechnology. The majority of
existing prediction methods rely on complicated processes to ex-
tract numerous representative features that are later paired with
state-of-the-art classifiers. A recent study proposes a recurrent
neural network architecture demonstrating for the first time the
potential of deep learning architectures for secondary structure
classification of low-homology proteins. According to the latest
state-of-the-art, proteins can be successfully described as graphs
for the task of classification providing substantial results while
at the same time addressing serious challenges including dealing
with datasets with different sample sizes, among others. Thus,
this study employs an efficient graph representation of low-
homology proteins along with graph neural networks which have
exhibited cutting-edge performance in a variety of graph-based
applications, including protein sequence classification. Overall,
this work proposes a novel, simple and fast architecture based
on graph neural networks, with a significantly reduced represen-
tative feature set, when compared to the literature, that derives
directly through the sequence-to-graph procedure. Experimental
evaluation on real protein datasets demonstrates the superiority
of our proposed architecture, with respect to accuracy and overall
complexity when compared against the state-of-the-art.

Index Terms—Secondary structure classification, Graph neural
networks, Multidimensional Horizontal visibility graph, Non-
linear time series analysis

I. INTRODUCTION

The prediction of protein structural classes from amino

acid sequences is a challenging problem as it is profitable

for determining protein function and regulation. In essence,

the biological function of a protein is associated with its

structure, which is specified by its amino acid sequence

via the process of protein folding. Along these lines, the

protein structure can be classified into four structural cat-

egories based on the protein’s folding patterns known as

(i) all α-fold, (ii) all β-fold, (iii) the α + β-fold, and the

(iv) α/β-fold [1]. Developing, however, a computationally

efficient yet reliable secondary structure prediction scheme

remains a pressing issue, especially for sequences for which
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not enough homologous information is provided from current

protein sequence databases. To this end, a plethora of ma-

chine learning based algorithms has been developed for the

structural class prediction of low-homology proteins based

on a wide range of protein sequence representations [2]–

[6]. The aforementioned approaches provide high-precision

results by combining manually-tailored features with cutting-

edge classifiers such as Support Vector Machines (SVM), Ran-

dom Forests (RF), and Fisher’s Linear Discriminant Analysis

(FDA), among others. Recently, Panda et al. proposed in [7]

a deep neural network approach demonstrating for the first

time the potential of deep learning architectures in the task

of low-homology protein structural classification, particularly

for small datasets. Nevertheless, the performance of their

work, as in aforementioned studies, comes at the expense of

utilizing complex procedures for meaningful feature extraction

for the representation of the proteins. Specifically, in order

to provide a representative feature set for each protein the

authors employed three independent procedures, namely, (i) a

SkipGram based sequence representation where each amino

acid sequence is converted to a series of trigrams [7], (ii) an

Atchley’s factors II, IV, V representation that derives from a set

of over 50 amino acid properties by dimensionality reduction

to identify clusters of amino acid properties that co-vary [8]

and (iii) an Electron–Ion-Interaction-Potential representation

that represents the electron interaction potential with an ionic

subsystem of a crystal quadratic in ionic displacement [9]. All

three representations result in a 18-dimensional feature vector

for each protein sequence that is later is evaluated by a deep

Gated Recurrent neural network [10].

Along these lines, the herein work proposes a novel and

efficient protein structure prediction architecture based on

graph neural networks, with a significantly reduced feature

set multitude that derives directly from the sequence-to-graph

pipeline without further feature extraction techniques needed.

In particular, as depicted in Figure 1, in this pipeline every

amino acid in the protein sequence is initially predicted as one

of the three secondary structural elements, namely H (helix),

E (strand) and C (coil) using the PSI-PRED tool [11]. Then,

by employing the Chaos Game Representation (CGR) [12]

technique, the updated 3-state sequence is converted into a

two-dimensional time series. In brief, as depicted in Figure 1,
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Fig. 1: General proposed sequence-to-graph architecture for protein secondary structure classification.

the concept of CGR is defined in a triangle where the three

vertices correspond to the 3 secondary structural element

letters H, E and C. Then, the first (x, y) point of the plot

is placed half way between the center of the triangle and the

vertex corresponding to the first letter of the 3-state sequence,

whereas, the i − th point of the plot is then placed half way

between the (i − 1) − th point and the vertex corresponding

to the i − th letter. The obtained plot is then called CGR of

the 3-state sequence and the x- and y-coordinates of each

point on the CGR are considered as the two-dimensional

time series. Each time instance of the two-dimensional time

series is later considered as a graph node resulting in a

single graph representation of the protein sequence based on

the Multidimensional Horizontal Visibility Graph (mdHVG)

method; a simple yet accurate algorithm that we proposed in

[13]. The secondary structural states along with the x and

y-coordinates are utilized as the three and only node features

that derive directly from the sequence-to-graph process. To the

best of our knowledge, there is no prior work in the literature

that employs graph neural networks for the protein structural

class prediction and especially when combined with mdHVG

algorithm. The contributions of this paper are summarized

below:

• The protein secondary structural class prediction is veri-

fied for the first time in a significantly low-dimensional

(3-dimensional) feature space with a novel feature repre-

sentation method and graph neural networks.

• Through the sequence-to-graph technique, node charac-

teristics are derived directly in an information-recycling

manner. As a result of the effectiveness of our suggested

framework, no further study for obtaining representative

attributes is necessary.

• The experiments are performed for datasets of varying

sizes indicating that the herein proposed architecture can

generalize for this type of protein data.

The rest of the paper is organized as follows: Section

II is an introduction to the data and methods utilized in

this work. Section III describes the experimental setup, the

classification procedure and the evaluation metrics. Section IV

is a discussion on the experimental results, and lastly, Section

V draws the conclusions of this work and gives directions for

future extensions.

Protein Samples per Class
Dataset

α β α+ β α/β
Total Number

of samples
Sequence
similarity

(homology)25PDB 443 443 441 346 1673 25%

640 138 154 171 177 640 25%

FC699 130 269 377 82 858 40%

498 107 126 136 129 498 25%

277 70 61 81 65 277 25%

204 52 61 46 45 204 25%

TABLE I: Dataset description based on structural class infor-

mation, total number of samples and sequence similarity.

II. MATERIALS & METHODS

A. Dataset & Data Preprocessing

This work employs the following publicly available and

widely used low-similarity benchmark datasets, namely, the

25PDB [14], FC699 [15], 640 [16], 498, 277 [17], and

204 [18]. As depicted in Table I, 25PDB, FC699 and 640

are large datasets compared to 498, 277 and 204 which are

significantly smaller especially for training neural networks.

The protein samples of these datasets are categorised based

on their structural class to α-fold, β-fold, α/β-fold and

α + β-fold classes. In this work, instead of dealing with the

protein primary structure, the PSI-PRED tool [11] is utilized

to predict the role of each amino acid in the protein secondary

structure. Particularly, PSI-PRED transforms the initial amino

acid sequence into another sequence of equal length that

now consists of only three states that describe its secondary

structure, namely coils (C), strands (E) and helices (H). This

simplification not only reduces the dimensionality of our data

from 20 amino acids to three structural elements but also

the overall computational complexity. Thereafter, CGR [12]

is employed in order to transform a sequence of secondary

structural elements into a two-dimensional time series [16],

[19] that is later represented as a unique planar graph via the

process of mdHVG as is described in details in the following

section.

B. Multidimensional Horizontal Visibility Graphs

The multidimensional Horizontal Visibility Graph (md-

HVG) is a novel algorithm capable of mapping a multidimen-

sional time series into a representative graph as we proposed

in [13]. It is experimentally shown that mdHVG is much

more efficient than its predecessor Horizontal Visibility Graph
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This work Panda et al.

25PDB FC699 640 498 277 204 25PDB FC699 640 498 277 204

Input features 3 3 3 3 3 3 18 18 18 18 18 18

Batch size 16 16 16 16 16 64 100 100 200 100 50 50

MLP layers 3 3 3 3 3 3 3 3 3 3 3 3

64 256 128 64 64 256 128 32 128 128 32 32

64 256 128 64 64 256 64 32 64 64 16 32
Hidden layer

nodes per layer
64 256 128 64 64 256 64 32 20 64 16 32

40 10 0 30 30 50 30 50 50 20 20 50

40 10 0 30 30 50 20 32 20 20 20 20
Drop out

per layer (%)
40 10 0 30 30 50 20 20 20 20 20 20

Learning rate 0.001 0.001 0.001 0.001 0.001 0.0001 0.01 0.01 0.01 0.01 0.01 0.01

Weight decay 0.001 0.001 0.01 0.001 0.001 0.001 0.0 0.0 0.0 0.0 0.0 0.0

Pooling ratio (%) 90 90 80 90 90 80 - - - - - -

TABLE II: Network parameters employed in [7] and this work.

(HVG) in terms of computational complexity. In addition,

mdHVG algorithm is scalable, simple to implement, and

suitable for the analysis of large, heterogeneous and non-

stationary time series of varying length.

Specifically, consider a multidimensional time series

{t
(d)
i }Ni=1 with d=1,..,D being the number of dimensions. A

planar mdHVG graph is constructed with a set of edges E as

follows: two nodes ni and nj share an edge eij ∈ E if and

only if for each intermediate time instance, tk, ti < tk < tj
holds that,

E = {eij | s(t
(d)
k ) < min{s(t

(d)
i ), s(t

(d)
j )}, ∀d, d = 1, .., D} (1)

where s(t
(d)
k ), d = 1, .., D is the time series intensity in the

d-dimension.

In essence, the algorithm processes directly a multidi-

mensional time series by generating a unique planar graph,

considering only the inter-visibility between the pairs of time

series intensities among different dimensions exploiting both

intra- and inter-data correlations.

C. Graph Neural Network with Hierarchical Graph Pooling

& Structure Learning

Graph Convolutional Neural Networks (GCNs) [20], have

achieved state-of-the-art performance in a variety of graph-

related applications, including protein sequence classification

[21]. Hierarchical Graph Pooling with Structure Learning

(HGP-SL) [21] is a revolutionary graph pooling operator that

combines graph pooling and structure learning into a single

module to build hierarchical representations of graphs. In

further detail, the graph pooling procedure selects a subset of

nodes dynamically to construct an induced subgraph for the

future layers. A structure learning technique is also provided

to learn a revised graph structure for the pooled graph at

each layer in order to preserve the integrity of the graph’s

topological information.

The node selection procedure in the k-th layer in GCNs for

the m-th input graph Gm, is formally defined as the Manhattan

distance between the node representation itself and the one

constructed from its neighbors as,

p = γ(Gm) = ||(Ikm − (Dk
m)−1Ak

m)Hk
m||1 (2)

where Ak
m and Hk

m are the adjacent and node feature repre-

sentations matrices respectively, Dk
m represents the diagonal

degree matrix of Ak
m, and Ikm is the identity matrix. Following

the evaluation of the node information score, the nodes vkm are

re-ordered in the graph depending on their scores, and then for

a pooling ratio r a subset of the ⌈r × vkm⌉ top-ranked node

indices is selected resulting to a new pooled subgraph Gk
m. The

adjacency and feature matrices Ak
m and Hk

m are also updated

based on the top-scored indices and represent the next layer’s

node feature and graph structure information.

Considering the structure learning mechanism, a similarity

score between two nodes vqm and vwm is calculated through a

sparse attention mechanism,

Sk
m(q, w) = max{0, Ek

m(q, w)− τ(Ek
m(q, :))},

Ek
m(q, w) = σ(~a[Hk

m(q, :)||Hk
m(w, :)]T ) + λAk

m(q, w)
(3)

where ~a ∈ R1×2d, with d being the output dimension of

the layer, is a weight vector that parametrizes a single layer

neural network, σ(·) is the activation function, || represents the

concatenation operation and λ is a trade-off parameter between

the two nodes.

This convolution and pooling operations are repeated several

times. Then, a readout function is applied to aggregate node

representations to make a fixed size representation, which

goes through Multi-Layer Perceptron (MLP) layers for graph

classification.

III. EXPERIMENTAL SETUP

This section describes in details the parameter setting of

our graph neural network architecture as well as the classifi-

cation procedure. The work presented here is compared and

contrasted with the one of Panda et al. [7], since it is the first

to use neural networks for low-homology protein structural

classification. All frameworks are implemented on a desktop

computer equipped with a CPU processor (Intel Core i7-7700)

clocked at 2.8GHz, and a 12 GB RAM.

A. Network Architecture & Parameter Tuning

The proposed graph neural network is implemented in

PyTorch, the Adam optimizer is utilized to optimize the model

and L2 regularization is employed to prevent overfitting during

training. The MLP consists of three fully connected layers that
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Class
25PDB FC699 640 498 277 204

Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec. Sens. Spec.

α 90.1±3.2 95.9±1.3 86.5±7.3 99.1±0.8 81.9±9.4 96.6±3.1 93.3±5.4 98.3±1.3 89.7±8.8 96.6±2.5 96.9±5.6 100

β 77.9±4.6 95.3±1.2 91.2±5.8 95.7±2.7 96.2±6.6 94.4±2.4 82.7±6.3 98.3±2.2 87.9±11.0 98.0±2.1 98.6±2.9 97.9±2.5

α+ β 64.3±11.8 90.7±3.0 94.9±3.1 84.9±5.4 77.1±11.5 81.5±3.7 91.3±9.2 93.3±2.3 78.5±10.8 85.9±6.6 84.4±17.7 90.4±4.4

α/β 62.0±7.9 83.8±2.8 19.6±15.6 97.2±2.0 46.0±8.5 88.6±4.9 77.43±9.9 95.4±4.9 61.4±19.8 90.9±5.7 62.9±16.0 95.0±4.8

Overall
Accuracy

87.2±1.0 92.7±1.1 85.7±1.5 94.7±2.0 89.7±3.6 93.6±2.9

TABLE III: Performance evaluation of the proposed graph neural network architecture on large (25PDB, FC699, 640) and

small datasets (498, 277, 204) in terms of averaged sensitivity, specificity and overall accuracy.

is followed by a softmax classifier. The number of neurons,

the learning rate, the weight decay and the pooling ratio

are evaluated in a grid search manner. In particular, a grid

search parameter tuning is conducted 20 times for a fixed

data split, and the most frequent values with the highest

accuracy are chosen per dataset. Categorical cross entropy

and categorical accuracy are employed as loss functions and

performance measures in all configurations. Finally, an early

stopping criterion is utilized in the training process so that

it is terminated when the validation loss does not reduce for

10 consecutive epochs. Table II provides information on the

network parameter set employed in [7] and in the herein study.

B. Classification

In the work of Panda et al. [7] there are no records about

the classification set up. The highest attained classification

accuracy, in particular, is reported without any comment on

whether or not the classification method is repeated for a

number of random splits. On the contrary, in our work, the data

are split in a stratified fashion into 80%-10%-10% for training,

validation and testing respectively. The classification proce-

dure is repeated for 15 random data splits for large datasets

and 30 for the smaller ones, and the average performance with

standard derivation is reported. The input of the neural network

specifically is the adjacency matrix of each protein along with

its feature matrix that consists of the secondary structure state

and the CGR x- and y-coordinates for each node of the graph.

C. Performance metrics

The performance of the proposed architecture is evaluated in

terms of overall classification accuracy, sensitivity and speci-

ficity as defined in the work of Panda et al. [7]. Sensitivity,

also referred as the true positive rate or recall, is an important

metric that measures the percentage of true samples being

correctly identified as true, whereas specificity, or the true

negative rate, is the percentage of the actual negative samples

being identified as negative. Finally, the number of epochs

required for the network to converge is also examined.

IV. EVALUATION RESULTS

The performance of the herein proposed framework in terms

of overall classification accuracy, sensitivity and specificity is

reported in Table III. As provided, the proposed classification

scheme is more stable for larger datasets (25PBD, FC699

and 640) since the standard deviation among 15 random

data splits is minimal (±1.0, ±1.1 and ±1.5). On the other

hand, for smaller datasets (498, 277 and 204), even if we

doubled the number of random data splits, the standard devi-

ation is substantially higher (±2, ±3.6, and ±2.9), indicating

the algorithm’s difficulty in generalizing on such little data.

Furthermore, with the exception of dataset 498, the network

mostly fails to accurately categorize the α/β structural class,

since the true positive rate, or else sensitivity, is substantially

low. This could be due to the fact that by its nature the α/β-

fold consists of α-helices and almost all parallel β-strands [1]

so it is very likely to be interpreted as an α or β structure.

This also stands for α + β class that consists of α-helices

and almost all antiparallel β-strands. For the FC699 dataset in

particular the extremely low percentage of sensitivity for the

α/β fold is also influenced by the fact that the dataset is quite

unbalanced with lesser data belonging to the α and β classes.

Overall Classification Accuracy
This work

Dataset
Average Worst-case Best-case

Average
without

Pooling

Panda et al.

25PDB 87.2 85.8 88.8 78.1 84.2

FC699 92.7 91.3 95.6 83.9 93.1

640 85.7 82.6 88.4 75.0 94.3

498 94.7 91.5 98.0 74.9 95.9

277 89.7 77.7 96.4 77.3 94.5

204 93.6 87.8 98.8 80.7 85.3

TABLE IV: Comparison between the herein proposed archi-

tecture, with and without graph pooling, and the work of Panda

et al. in terms of overall classification accuracy. The best

performed scheme per dataset is highlighted and indicated in

bold.

Table IV depicts the comparison between the herein pro-

posed classification scheme, with and without graph pooling,

and the work of Panda et al. in terms of overall classification

accuracy. As mentioned in SectionIII-B Panda et al. provide

their optimal result with no much explanation. Thus, we

compare and contrast our results based on the average, the

best and the worst performance of our framework in terms

of standard deviation. Considering the case where no graph

pooling is conducted, we have also performed an optimal

parameter selection for the network in a grid search manner for

a fair comparison. As provided, the graph pooling operation

enhances indeed the performance of the to a great extend.

Along these lines, considering the 25PDB and 204 datasets the

herein proposed architecture with graph pooling outperforms

the work of Panda et al. even in the worst-case scenario. On the

contrary, the performance of our scheme on the 640 dataset is
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Fig. 2: Number of epochs required for the network to converge.

In our work the average number of epochs is reported.

significantly lower even on the best-case scenario. According

to Table I, this could be due to the fact that those specific

datasets contain in total more α + β and α/β classes that

are very likely to be misclasified as an α or β fold due to

their nature as previously mentioned. Finally, for the remaining

datasets, FC699 and 277, our best-case scenario achieves

slightly higher classification results compared to Panda et al.

indicating that overall, despite the low dimensional representa-

tion of data, the system has embedded global knowledge about

the protein sequences. Overall, the experimental evaluation

indicates that graph neural networks perform rather well in

terms of protein secondary structure categorization for both

large and small datasets.

Regarding the convergence time of our proposed network,

as described in Section III-A an early stopping criterion is

utilized in the training process. In particular, experimental

evaluation verified that after that certain upper limit of training,

further overtraining results to a similar performance across

all datasets. Figure 2 shows the minimum number of epochs

needed for our proposed architectures to reach to an optimal

solution. The number is averaged across the number of random

data splits and a comparison to the work of Panda et al. is also

provided. As shown, besides 204 dataset that requires nearly

100 epochs to reach to an optimal solution, for the rest datasets

a minimum of 30 epochs is enough.

V. CONCLUSIONS AND FUTURE WORK

In this work we design and implement a novel classification

scheme for secondary structure classification of low-homology

proteins incorporating graph neural networks to the process

for the first time. More importantly, the proposed architecture

exploits the information deriving from the sequence-to-graph

procedure in an information-recycling manner resulting in

significantly low-dimensional (3-dimensional) feature space.

The study on real protein data revealed the superiority of the

proposed scheme, despite the low dimensional representation

of data, indicating that graph neural networks are capable of

categorizing the secondary structure of low-homology proteins

for both large and significantly small datasets. As a result of

the effectiveness of our suggested framework, no further study

for obtaining representative attributes is necessary.

An extension of this work will consider a framework

that will process directly on the primary amino acid protein

sequence without employing intermediate tools such as PSI-

PRED and CGR.
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