
Features Motivated From Uncertainty Principle for
Classification of Normal vs. Pathological Infant Cry

Aastha Kachhi, Priyanka Gupta, Hemant A. Patil
Speech Research Lab, DA-IICT Gandhinagar, Gujarat, India

Email: {aastha kachhi, priyanka gupta, hemant patil}@daiict.ac.in

Abstract—This study investigates the significance of the pro-
posed uncertainty vector (u-vector) derived from Heisenberg’s
uncertainty principle in signal processing framework, and related
t-vector and ω-vector for classification of normal vs. pathological
infant cries. Fundamental frequency (F0) contours in an infant’s
cries are rhythmic and have patterns w.r.t. the variances in time
and frequency-domains. On the other hand, pathological cries
have more smeared variances. To that effect, we propose u-
vector as a combination of two features, namely, t-vector, and
ω-vector, which capture variances in time and frequency domains,
respectively. Furthermore, we also find that non-cepstral features
are better suited for pathology detection as compared to the
cepstral features. Given that early diagnosis of pathology in
infants is important, the detection procedure should be efficient
in terms of the time taken. To that effect, we also present latency
analysis of u-vector, t-vector, and ω-vector w.r.t. Constant Q
Transform (CQT) as baseline. We observe that ω-vector achieves
remarkable latency w.r.t. the remaining features, indicating the
potential of the proposed feature for practical system deployment.
The ω-vector also shows the best performance of 98.50% as
overall accuracy, and achieves an absolute improvement of 1.5%
in accuracy.

Index Terms—Infant cry classification, Heisenberg’s uncer-
tainty principle, Time-Bandwidth Product, u-vector, latency.

I. INTRODUCTION

An infant’s only means of communication is through crying.
Various diseases, malnutrition, and vaccine-preventable dis-
eases claim the lives of millions of infants within a few months
of birth. Fingerprint and cry-based identification methods
for neonates are being developed for this purpose [1], [2].
Asphyxia, asthma, and Sudden Infant Death Syndrome (SIDS)
are among the most common causes of infant deaths [3].
To clinically identify these illnesses, several measurements,
such as images from Head Ultrasound (HUS), Computed
Tomography (CT) scans, and Magnetic Resonance Imaging
(MRI) are used which indicate damaged areas of the brain.
However, in many developing countries, detecting pathology
takes a long time and is costly which can impact the health of
the infant because not every infant has the comfort of having
access to healthcare, and support from paediatricians.

For example, one of the pathologies, asphyxia, is recognized
through visual symptoms, such as pale and bluish limbs.
However, by that time, significant neurological damage to
the infant would have already been occurred [3], [4]. In the
same manner, the acoustical and perceptual characteristics of
deaf infants are influenced by the severity of the hearing
loss, the type and duration of rehabilitation, and the age at

which the pathology was diagnosed. Thus, need of developing
diagnostic assistive tools using infants’ cries is increasing
to help paediatricians in detecting the early signs of such
pathologies [5]. The physiological, neurological, paediatrics,
engineering development linguists, and psychology disciplines
are all involved in the infant cry analysis and classification.
In this context, this paper proposes a signal-processing based
method for binary classification of normal vs. pathological
cries.

The initial analysis of normal vs. pathological cries started
in early 1960s, where spectrogram was used [6]. In both the
time and frequency-domains, a number of various charac-
teristics of cry sounds (also called as ’cry modes’ or ’cry
phonemes’), such as vibration, dysphonation, inhalation and
hyperphonation were explored [6]. This study was extended
to the pathological cries in [7], where these cry modes were
found to be correlated. Because of quasi-periodic sampling
of the vocal spectrum via high pitch-source harmonics, the
formant structures beyond F0 are barely visible in the cry
mode investigation. The spectral variations in a cry unit, have
the ability to fetch the abundance of information from the cry
signals [7].

To that effect, we propose a new method using variations
in both time and frequency-domains simultaneously obtained
using Time-Frequency Distribution (TFD). TFD indicates the
energy spectral density of a signal in both time and frequency
domains, which represents information in the form of Heisen-
berg boxes. The area of the Heisenberg’s box is dictated by
the Heisenberg’s principle in signal processing framework [8].
Mathematically, the area of the Heisenberg’s box is given
by Time-Bandwidth Product (TBP). The value of TBP is
proportional to the number of sample points needed to generate
the distribution of the stochastic process, hence, the higher
the value of TBP, the higher is the information content in the
signal under consideration [9]. Furthermore, the randomness
in a signal is captured by the uncertainty information. The
uncertainty is therefore caused by the randomness of the
process that generates the signal [9], [10].

This work is motivated by the proposition that melody and
rhythm (prosody) understanding and memory begin around the
third trimester of pregnancy, and infants have a remarkable
musical aptitude, where melody contours of F0 are prominent
[11]. Hence, TBP (i.e., the uncertainty in information) can
be helpful to distinguish normal vs. pathological cries based
on the information from the F0 contours. To that effect,
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we propose uncertainty-based feature set called as u-vector
for the classification of normal vs. pathological cries. This
proposed feature set is based on the Heisenberg’s uncertainty
principle, to capture the uncertainty in the cry signal in signal
processing framework. The u-vector is constructed with the
help of two other feature vectors, namely t-vector and ω-
vector, which are also introduced through this work for infant
cry analysis. These vectors represent the variance in time and
frequency domains, respectively. Unlike other state-of-the-art
and handcrafted features, the u-vector, t-vector and ω-vector
features are easy and fast to compute. This is validated by
latency period analysis shown in this work. The significance
of this study is further strengthened by information-theoretic
measure, namely Kullback-Leibler Divergence (KLD) and
Jenson-Shannon Divergence (JSD) based discriminative mea-
sures.

II. TIME BANDWIDTH PRODUCT

Let s(t) be a practical non-stationary signal having Fourier
transform S(ω) = F{s(t)}. If s(t) has regular time variations,
then S(ω) decays fast in high frequency region. This leads
to longer spread of energy of s(t) in the time-domain [8].
In this context, from Mallat’s proposition in [8] (chapter
2, proposition 2.1), a function s(t) is bounded and i times
continuously differentiable with bounded derivatives if [8]∫ ∞

−∞
|S(ω)|(1 + |ω|i)dω < +∞. (1)

Here, S(ω) = F{s(t)} ∈ L1(R). However, time spread can be
restricted by doing the following operation given by:

sα(t) = s

(
t

α

)
, (2)

where the scaling factor is α < 1. Using the time-scaling
property [12], the Fourier transform of the signal s(t) is

Sα(ω) = |α|S(α ω). (3)
Since the scaling factor α < 1, eq. (3) the Fourier transform
expands by a factor of 1

α . Thus, it shows that gain in time
localization counter-affects the gain in localization in the
frequency-domain and vice-versa [12].

From Heisenberg’s uncertainty principle in quantum me-
chanics, it is impossible to find the precise location and
momentum of any particle simultaneously [13]. Similarly, in
signal processing framework, the energy spread in time and
frequency-domain is restricted by Heisenberg’s uncertainty
principle [10]. Hence, the average location of the signal
s(t) ∈ L2(R) is given as:

t̄ =

∫ ∞

−∞

1

||s||2
t|s(t)2|dt, (4)

and the average momentum is given by

ω̄ =

∫ ∞

−∞

1

2π||s||2
ω|S(ω)2|dt. (5)

The obtained ω̄ from eq. (5) is also called as effective band-
width by Gabor [14]. The variance, i.e., σ2

t and σ2
ω around

these averages represents the uncertainty in determining the

particle’s position and momentum, respectively [14]. The
average time variance can be calculated as

σ2
t =

∫ ∞

−∞

1

||s||2
(t− t̄)2|s(t)2|dt, (6)

and the average momentum is given by

σ2
ω =

∫ ∞

−∞

1

2π||s||2
(ω − ω̄)2|S(ω)2|dt. (7)

It can be seen from eq. (6) and eq. (7), that signal expansion in
one domain results in signal contraction in the other domain.
As a result, the signal spread in either domain has an inverse
relationship. Hence, the Time Bandwidth Product (TBP) given
by σ2

t σ
2
ω is constant and represents the area of the Heisenberg’s

box. This product gives the ”richness” of information from the
infant cry segment under consideration [9], [15]–[17].

Given that melody contours of F0 are prominent in children
and infant cries [11], and the F0 contours are not as rhythmic,
and are smeared in pathological cries, in this study we extract
discriminative features for infant cry classification using σ2

t ,
σ2
ω and the product σ2

t σ
2
ω . To that effect, we propose t-

vector, ω-vector, and u-vector features for the detection of
pathological cries.

III. FEATURE VECTOR EXTRACTION PROCEDURE

The proposed feature extraction for infant cry classification
is based on the fact that the spectral energy density patterns are
different for healthy vs. pathological cries. This is also shown
by the spectrographic analysis in Figure 2 which shows that
pathological cries have high frequency of inhalation, indicating
problem while breathing. Hence, spectral smearing is found in
the entire frequency range. It can also be observed that there
is a sudden rise in the pitch harmonics and spreading in some
regions. Therefore, the frequency variance helps to capture the
regions of spectral smearing.

The feature extraction procedure in this work begins by
passing the cry signal s(t) through a Gabor filterbank of 40
filters. This results in 40 subband signals si(t), where i ∈
[1,40]. Since the cry signal is multi-component, the subband
signals help in capturing frequency variances effectively [18].
Here, 40 linearly-spaced Gabor filterbank is used because of its
optimal time and frequency resolution [19], [20]. Each of the
subband output signals is frame blocked with a window size
of 30 ms and window shift duration of 15 ms (experimentally
optimized). For each of these frames, both σ2

t and σ2
ω is

computed using the eq. (6) and eq. (7), respectively and
hence, three different vector representation of the input speech
signal are obtained as shown in Algorithm 1. Next, logarithmic
operation is then performed on σ2

t and σ2
ω to give t-vector and

ω -vector of the cry signal. Similarly, logarithm on the product
σ2
t σ2

ω gives the u-vector or the uncertainty vector of the cry
signal, as indicated by eq. (8) and eq. (9).

log(σ2
t σ

2
ω) = log(σ2

t ) + log(σ2
ω), (8)

u-vector = t-vector + ω-vector. (9)
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Fig. 1: Functional block diagram of u-vector, t-vector, and ω-vector feature extraction.

Algorithm 1: TBP Computation for Infant cry
Input: Input: cry signal x
Output: Output: u-vector

1 T ← Gabor filterbank (x)
2 Window length = 30 ms, window overlap = 15 ms
3 For j=1:number of frames do
4 V art ← Variance(T(j, :), mean) ←{t-vector}
5 meanf ← mean(FFT(T (j, :)), freq)/(2 ∗ pi)
6 V arf ← Variance(A, meanf , freq) ←{ω-vector}
7 tbpgen ← vart ∗ varf ←{u-vector}
8 end for
9 return tbpgen

(a)

(b)
Fig. 2: Spectrograms of (a) healthy vs. (b) pathological cries.

TABLE I: Statistics of the Chillanto dataset used. After [21].

Class Category # Utterances

Healthy
Normal 507
Hungry 350

Pain 192

Pathology Asphyxia 340
Deaf 879

IV. EXPERIMENTAL SETUP
A. Dataset Used

In this study, we use Baby Chillanto database, which was
designed using recordings made by doctors and is the property
of Mexico’s NIAOE-CONACYT [21]. Each recording was
segmented to make infant cry signals of 1 second duration
each. Since the sampling rate of the cry signals provided in
the dataset is not uniform, we resampled all the utterances at

a sampling rate of 11.025 kHz. The statistical details of the
dataset are shown in Table I.

B. Classifier Used

The experiments were performed using Gaussian Mixture
Model (GMM) classifier, which is commonly used for infant
cry classification [22], [23]. In this study, 512 mixture com-
ponents are used to train the model. Further, Log-Likelihood
Ratio (LLR) score is used to evaluate the test cry signal.

C. Baseline

We consider CQT feature as the baseline for this work [24],
where for low frequency regions, CQT gives better frequency
resolution. For this baseline, we performed experiments with
96 number of bins per octave, keeping fmin = 100 Hz.

V. EXPERIMENTAL RESULTS

This work is performed using 10-fold cross-validation on
Baby Chillanto dataset. We performed the experiments by fine-
tuning feature parameter such as window overlap and number
of subband filters. To that effect, we first varied the window
overlap with values as 10, 15 and 20 ms. Number of filters
were kept constant. The obtained experimental results are
presented in Table II. From Table II, it can be observed that the
highest performance is achieved as 93.83% accuracy, obtained
when window length, window overlap and number of subband
filters are of 30 ms, 15 ms and 40 respectively. Further, the next
set of experiments were performed by varying the subband
filters and keeping window overlap constant. These fine-tuning
were performed considering the two cases of non-cepstral, and
cepstral u-vector. It should be noted that the non-cepstral u-
vector (with 93.83% accuracy) performs better than its cepstral
version (with 93.48% accuracy). It can also be observed from
Table II that as the number of subband filters increases, the %
classification accuracy decreases.

TABLE II: % Accuracy for non-cepstral and cepstral u-vector
Window
Length

Window
Overlap # Filters % Accuracy

(non-cepstral)
% Accuracy

(cepstral)
30 15 40 93.83 93.04
30 15 60 93.08 93.48
30 15 80 87.71 87.00
30 20 40 93.35 92.42

Next, we compare the performance of u-vector, t-vector and
ω-vector with the CQT baseline in Table III. The comparison is
done for both the cases of cepstral and non-cepstral features.
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Fig. 3: KLD and JSD of the proposed feature sets. Panel-I and Panel-II denote the cases of non-cepstral features and cepstral
features, respectively. KLD (healthy || pathology) is shown in (a) and (d). KLD (pathology || healthy) is shown (b) and (e).
JSD (healthy || pathology) is presented in (c) and (f).

It can be observed that, the non cepstral ω-vector performs
the best with % classification accuracy of 98.5% with overall
increase of about 1.5% than the baseline CQT feature. Hence,
it can be observed that the frequency distribution patterns of
the different cry modes smeared over the entire frequency
band, are captured by the ω-vector as discussed in [6]. Further,
it can be observed that out of all the features shown in Table
III, the best performance is achieved by ω-vector in the non-
cepstral case with an accuracy of 98.50%. Furthermore, it
should also be noted that the average overall accuracy of non-
cepstral feature is higher than the cepstral features. In particu-
lar, the non-cepstral features achieve average higher accuracy
(95.14%) as compared cepstral features. This indicates that
non-cepstral features are better suited for pathology detection.

Given that ω-vector achieves the best performance in the
non-cepstral domain, we performed the next set of experiments
to observe the effect of number of subband filters in the ω-
vector. Table IV presents the corresponding results, and it can
be observed that the best result 98.50% is achieved with 40
number of subband filters. From Table IV, we can say that
when the entire frequency band is divided into 40 subbands,
the frequency variance captured in each subband is optimum
for our binary classification task.

TABLE III: % Classification accuracy for various cepstral and
non cepstral feature set

Non Cepstral Feature Cepstral Feature
Feature % Accuracy Feature % Accuracy
u-vector 93.83 u-vector 93.48
t-vector 91.23 t-vector 89.38
ω-vector 98.50 ω-vector 96.74

CQT 97.00 CQT 98.55
Average 95.14 Average 94.53

TABLE IV: % classification accuracy of ω-vector with various
number of subband filters

Subband Filters 40 60 80 100
% Accuracy 98.50 91.37 92.20 96.78

A. Model-level measure of discriminative ability
To estimate the model-level measure of discriminative abil-

ity w.r.t. various feature sets, we use KLD and JSD. If f and
g are two PDFs, KLD is calculated as [25]

KLD(f ||g) = −
∫

f(x) ln

{
g(x)

f(x)

}
dx. (10)

It is an asymmetric measure, i.e., KLD(f ||g) ̸= KLD(g||f),
since it does not satisfy the triangle inequality. To eliminate
the asymmetry between two PDFs, we estimate another model-
level measure called Jensen-Shannon Divergence (JSD) as:

JSD(f ||g) = 1

2
KLD(f ||m) +

1

2
KLD(g||m), (11)

where m is estimated as 1
2 (f + g) [25]. Higher value of

KLD and JSD signifies better discriminative ability of the
model. Figure 3 shows KLD and JSD of non-cepstral and
cepstral features in Panel-I and Panel-II, respectively. It can be
observed that for the case of non-cepstral features as shown
in Panel-I, ω-vector outperforms all the remaining features
sets in terms of KLD as well as JSD. This shows that the
better discriminative ability of our model is achieved when ω-
vector is used. This is also reflected in the % accuracy results
achieved, shown in Table III, where ω-vector outperforms all
the remaining features in the case of non-cepstral features. Fur-
thermore, for the case of cepstral features as shown in Panel-II,
it can be observed that CQT shows better discriminative ability
for the case of KLD (healthy|| pathology) and JSD (healthy||
pathology). However, it should be noted that ω-vector shows
better performance for the case of KLD (pathology || healthy).

B. Analysis of Latency Period

In this study, we also investigate the latency period for t-
vector, ω-vector, and u-vector w.r.t the baseline CQT feature
set considered in this study. The latency is estimated by the
performance evaluation in terms of % accuracy w.r.t. varying
durations of speech segment in an utterance. The duration of
the utterance ranges from 20 ms to 600 ms, with an interval
of 150 ms. In this work, we have estimated KLD and JSD
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on GMMs of 512 mixtures, for each of the feature vectors.
Figure 4 shows comparison between non-cepstral features of
CQT, u-vector, t-vector, and ω-vector. It can be observed that
the ω-vector outperforms u-vector and t-vector, and shows
remarkable latency as compared to the CQT. Moreover, it
can be observed that all the three features, i.e., u-vector, t-
vector, and ω-vector gave increased % accuracy in a short
duration of speech utterance of < 200 ms. On the other
hand, CQT showed no improvement in accuracy even for a
long duration of 600 ms of speech utterance. Additionally, the
feature performance is better if for a low latency period the
accuracy is high, which indicates the faster classification by
the model and thus, indicating suitability for practical infant
cry classification system deployment.

Fig. 4: Latency period vs. % accuracy between the various non-
cepstral features for CQT, u-vector, t-vector, and ω-vector.

VI. SUMMARY AND CONCLUSIONS

In this study, u-vector (which is a combination of t-
vector and ω-vector) is used to detect pathology from infant
cries. These features are motivated from the Heisenberg’s
uncertainty principle in signal processing framework for clas-
sification of normal and pathological crying. To categorize
the cries, the u-vector uses variances in time and frequency-
domains, which correspond to t-vector and ω-vector. It is
observed that ω-vector outperforms the remaining feature sets.
This justifies the proposition that as compared to healthy
cries, pathological cries have an irregular frequency dispersion
across the entire frequency band. Our experiments also show
that non-cepstral features are better suited for detection of
pathological cries. Further, we have also demonstrated the
discriminative capability of our models using information-
theoretic measures, such as KL divergence and JS divergence.
Given the early detection of pathology in infants is also
associated with faster detection, we also analyzed the latency
period performance of the proposed features and achieved
relatively the best performance in latency.
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