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ABSTRACT

In this paper, we address the multi-frame super-resolution
MRI problem. We formulate the reconstruction problem as
a coupled tensor multilinear approximation. We prove that
exact recovery of the high-resolution 3D isotropic image is
achievable for a variety of multilinear ranks. We propose a
simple algorithm based on Tikhonov regularization to per-
form the reconstruction. Our simulations on real datasets
illustrates the good performance of the proposed approach,
with a lower computation time than state-of-the-art methods.

1. INTRODUCTION

Magnetic resonance imaging (MRI) is a versatile medical
imaging modality, providing excellent contrast between soft
tissues. The acquisition parameters can indeed be tuned in
order to make this contrast sensitive to various tissue proper-
ties, such as proton density, and longitudinal and transverse
relaxation times (respectively T1 and T2). MRI acquisition
consists of repeatedly exciting protons in the human body,
using various electromagnetic pulses, and acquiring a small
amount of Fourier samples from the image.

Typical MRI data consist in 2D or 3D images in arbitrary
orientations. The latter possess two in-plane spatial dimen-
sions and a third spatial slice dimension, hence they can be
seen as tensors. However, 3D MRI suffers from a relatively
slow acquisition time, typically on the order of minutes. To
circumvent this drawback, super-resolution techniques have
been shown to be efficient in a number of situations [1, 2, 3].
They consist in recovering a 3D high-resolution image from
one or several low-resolution observations.

Recently, it has been proposed to recover the high-
resolution image from a single low-resolution observation
using deep learning [4, 5]. However, in the presence of small
lesions, it may be preferable to consider several observations
for diagnostic use of the images and to avoid relying on an
external patient database for the prior. Therefore, in the re-
mainder, we will focus on super-resolution from multiple
observations, also termed multi-frame super-resolution.
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Multi-frame super-resolution MRI consists of acquiring
several complementary observations of the organ of interest,
e.g. three orthogonal scans [6], or three scans with sub-voxel
shifts in the slice direction [7]. Each observation has high
in-plane resolutions (1 mm or less) in the first two dimen-
sions, and low resolution in the slice direction (typically 3 to
10 mm). The acquisition process can be modelled, including a
blurring/downsampling operator in the slice direction, Patient
motion is dealt with as a pre-processing step using motion-
compensated reconstruction [8] and/or image registration [9].

The super-resolution problem is often solved by reg-
ularized inversion. Besides Tikhonov regularization [10],
total variation [11] or Beltrami energy regularizers [8] have
been proposed, as well as constraints on the rank of the
matricized image (this method was applied to single-frame
super-resolution) [12], and patch-based regularization meth-
ods [13]. The last two methods are intended to exploit the
low-rank structure of the images. Iterative solvers are used
in all these cases, such as the conjugate gradient (Tikhonov),
primal dual gradient descent (Beltrami) or the alternating
direction method of multipliers (low-rank and patch-based
methods).

However, matrix patch-based methods possess a high
computational burden, as they require many operations for
extracting patches from the image, sorting them, and perform-
ing dimensionality reduction. They also fail at preserving the
natural tensor shape of the observations. More importantly,
no theoretical guarantees for exact reconstruction of the high-
resolution images were provided.

Tensor-based reconstruction methods were recently envi-
sioned in some engineering fields such as remote sensing of
spectrum cartography [14, 15, 16]. In the field of medical
imaging, coupled tensor models were used for the reconstruc-
tion of dynamic cardiac images [17] of functional MRI re-
construction [18], for instance. Such approaches preserved
the structural information between the dimensions of the im-
ages. Theoretical guarantees for exact image recovery were
also formulated.

Several low-rank factorizations can be considered for
approximating tensor data. The multilinear (also known as
Tucker) factorization was considered in [15] with an applica-
tion in remote sensing. A closed-form SVD-based algorithm
was proposed. The approach of [15] considered 3D image
reconstruction from two degraded tensors.
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In this paper, we propose a novel tensor-based approach
for multi-frame super-resolution MRI. The proposed ap-
proach is based on a coupled low-rank multilinear approxi-
mation of three MRI observations. We introduce an algorithm
with low computational burden, named isometRic Image
Reconstruction by COupled Tensor Tucker Approximation
(RICOTTA), that is inspired by the higher-order SVD [19].
We prove that our approach achieves exact reconstruction of
the high-resolution image for a variety of multilinear ranks.
We illustrate the performance of our method on a set of real
datasets. We show that our algorithm yields good recon-
struction, with lower computation time than matrix-based
super-resolution methods.

An extended version of this work is available online in the
preprint [20] and additionally contains proof for our theorems
and experiments on the choice of the parameters.

Notation– We mainly follow the notations of [21, 22].
We use lowercase (a) or uppercase (A) plain font for scalars,
boldface lowercase (a) for vectors, uppercase boldface (A)
for matrices, and calligraphic (A) for tensors. The ele-
ments of vectors/matrices/tensors are accessed as ai, Ai,j and
Ai1,...,iN respectively.

For a matrix A, we denote its transpose and Moore-
Penrose pseudoinverse as AT and A† respectively. The no-
tation IM is used for the M ×M identity matrix and 0L×K
for the L × K matrix of zeroes. We use the symbol �, ⊗
and � for the Kronecker, tensor and Khatri-Rao products, re-
spectively. We also denote by tSVDR (X) ∈ Rn×R a matrix
containing R leading right singular vectors of X.

We use vec{·} for the standard column-major vector-
ization of a tensor or a matrix. Operator •p denotes con-
traction on the pth index of a tensor, e.g., [A •1 M]ijk =∑

`A`jkMi`. For a tensor Y ∈ RI×J×K , its first unfolding
is denoted by Y(1) ∈ RJK×I . The following shorthand no-
tation is used for the multilinear product: [[G; U,V,W]] =
G •1 U •2 V •3 W.

2. SUPER-RESOLUTION BY COUPLED
MULTILINEAR APPROXIMATION

2.1. The image reconstruction problem

We aim at recovering a high-resolution 3D isotropic (in
this context, an image is said isotropic if its dimensions
are all equal) image (HRII). It can be viewed as a tensor
Z ∈ RI×J×K , where K represents the number of frontal
slices and I and J stand for the in-plane number of pixels.

We observe three pre-processed low-resolution 3D images
(LRI) available, that can be viewed as degraded versions of
Z . The observations are denoted to as Y1 ∈ RI1×J×K , Y2 ∈
RI×J2×K and Y3 ∈ RI×J×K3 , respectively. The dimensions
I1, J2 andK3 stand for the degraded dimensions, i.e., I1 � I ,
J2 � J and K3 � K, respectively.

Formally, we can express the degradation model as mode
product of the HRII Z with some degradation matrices as

Y1 = Z •1 D1 + E1,

Y2 = Z •2 D2 + E2,

Y3 = Z •3 D3 + E3.

(1)

The degradation matrices Di (i = 1, 2, 3) are downsampling
matrices such as D1 ∈ RI1×I , D2 ∈ RJ2×J and D3 ∈
RK3×K and depend on the sensor specificities. The tensors
Ei (i = 1, 2, 3) represent white Gaussian noise terms.

A possible way to formulate the image reconstruction
problem is to consider the following optimization problem

min
Ẑ

λ1‖Y1 − Ẑ •
1
D1‖2F + λ2‖Y2 − Ẑ •

2
D2‖2F

+λ3‖Y3 − Ẑ •
3
D3‖2F + µR(Ẑ), (2)

where the scalars λi (i = 1, 2, 3) are balance parameters that
control the weights of the LRI in the cost function. The oper-
ator R(·) is a regularization operator and performs Tikhonov
regularization [23] on the reconstructed HRII Ẑ . Its weight
is controlled by the user-specified scalar µ.

2.2. Coupled Tucker reformulation

In this paper, we propose to use a coupled tensor multilinear
(Tucker) approximation to solve the reconstruction problem.
We assume that the HRII Z admits a Tucker decomposition
with given multilinear ranks (R1, R2, R3) as

Z = [[G; U,V,W]], (3)

where U ∈ RI×R1 , V ∈ RJ×R2 and W ∈ RK×R3 are
the factor matrices and G ∈ RR1×R2×R3 is the core tensor.
Under this assumption, model (1) becomes

Y1 = [[G; D1U,V,W]] + E1,

Y2 = [[G; U,D2V,W]] + E2,

Y3 = [[G; U,V,D3W]] + E3.

(4)

Furthermore, solving (2) boils down to minimizing a cost
function fT (Ĝ, Û, V̂,Ŵ) with respect to the low-rank fac-
tors U, V, W, G. This cost function is such that

fT (Ĝ, Û, V̂,Ŵ) = λ1‖Y1 − [[Ĝ; D1Û, V̂,Ŵ]]‖2F
+ λ2‖Y2 − [[Ĝ; Û,D2V̂,Ŵ]]‖2F
+ λ3‖Y3 − [[Ĝ; Û, V̂,D3Ŵ]]‖2F
+ µ‖[[Ĝ; Û, V̂,Ŵ]]‖2. (5)

2.3. Proposed algorithm

Rather than finding a local minimum of (5), we propose here-
after a closed-form algorithm as a sub-optimal solution for
(4). This new approach is summarized in Algorithm 1, that
we will further refer to as isometRic Image Reconstruction
by COupled Tensor Tucker Approximation (RICOTTA).

Step 1 of RICOTTA estimates the matrix factors U, V, W
by computing the truncated SVD (tSVD) of the concatenated
unfoldings to ranks R1, R2, R3, respectively. Step 2 of
RICOTTA consists in solving the least-squares problem

argmin
Ĝ
‖X vec{Ĝ} − z‖2F + µ‖ vec{Ĝ}‖2F , (6)
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Algorithm 1: RICOTTA
input : Y1, Y2, Y3, D1, D2, D3; R1, R2, R3

output: Ŷ ∈ RI×J×K

1. U← tSVDR1

([
Y

(1)
2 Y

(1)
3

])
,

V← tSVDR2

([
Y

(2)
1 Y

(2)
3

])
,

W← tSVDR3

([
Y

(3)
1 Y

(3)
2

])
2. Ĝ ← argmin

G
fT (G, Û, V̂,Ŵ);

3. Ẑ = [[Ĝ; Û, V̂,Ŵ]].

which can be done through normal equations of the form(
XTX+ µI

)
vec{Ĝ} = XT vec{z}, (7)

for which efficient solvers can be used [24]. Therefore, the
total computational complexity of RICOTTA is

• O((R1+R2+R3)IJK) flops for the truncated SVDs;

• O(min(R3
3+(R1R2)

3;R3
1+(R2R3)

3)) flops for solv-
ing the Sylvester equation in Step 2.

3. EXACT RECOVERY ANALYSIS

In this section, we provide gerenic guarantees for exact recov-
ery of the HRII tensor in the noiseless case.

Theorem 3.1. Assume that D1 ∈ RI1×I , D2 ∈ RJ2×J , and
D3 ∈ RK3×K are fixed full row-rank matrices. Let

Z = [[G; U,V,W]], (8)

where G ∈ RR1×R2×R3 , R1 ≤ I , R2 ≤ J , R3 ≤ K,
and U ∈ RI×R1 , V ∈ RJ×R2 , W ∈ RK×R3 are random
tensor and matrices, distributed according to an absolutely
continuous probability distribution. We also assume that Ei

(i = 1, 2, 3) in (1).
1. If either R3 ≤ K3 or R1 ≤ I1 or R2 ≤ J2, and

R1 ≤ min(R3,K3)R2,

R2 ≤ min(R3,K3)R1

R3 ≤ min(R1, I1)min(R2, J2),

(9)

then with probability 1 there exists a unique tensor Ẑ such
that Ẑ •1 D1 = Y1, Ẑ •2 D2 = Y2 and Ẑ •3 D3 = Y3.
2. If (R1, R2, R3) > (I1, J2,K3), then the reconstruction
is non-unique, i.e. there exist an continuum of Ẑ such that
Ẑ •1 D1 = Y1, Ẑ •2 D2 = Y2 and Ẑ •3 D3 = Y3; in fact,
‖Ẑ −Z‖ can be arbitrary large.

In Figure 1, we illustrate the statement of Theorem 3.1.
The region (a) where the HRII is recoverable is pictured in
green while the red region (b) corresponds to ranks for which
the HRII is not recoverable exactly. The hatched area corre-
sponds to cases in which the conditions (9) are not satisfied.

Fig. 1. Identifiability region depending on R1, R2 and R3.

4. EXPERIMENTS

All simulations were run on a MacBook Pro with 2.3 GHz
Intel Core i5 and 16GB RAM. The code was implemented
in MATLAB and is available online at https://github.
com/cprevost4/RICOTTA_Software. For basic ten-
sor operations we used TensorLab 3.0 [25]. Details on the
simulations setup is available in [20].

We compared the performance of RICOTTA to the multi-
frame state-of-the-art [8]. Two super-resolution algorithms
were considered. The first one used Tikhonov regularization
and the second one used feature-preserving Beltrami regular-
ization [26]. They will be further denoted to as SR-T and
SR-B, respectively. They were tuned according to the origi-
nal work [8]. In this paper, a preprocessing step was applied
in order to cast the acquired data and observation model into
the separable form given in (1).

To evaluate the quality of the reconstructed images Ẑ , we
considered three quantitative metrics [27]. The first one was
the peak signal to noise ratio (PSNR), defined as

PSNR =
10

K

K∑
k=1

log10

(
IJE {(Z):,:,k}

‖(Z):,:,k − (Ẑ):,:,k‖2F

)
, (10)

where E{·} denoted the expectation operator. The second
metric was the Cross-Correlation (CC) [27]. The third one
was the widely used sharpness index (SI) [28], that evaluates
the regularity of images without the need for a reference. We
computed the average SI across in-plane spatial dimensions
(SI1,2) and the average SI across the slice dimension (SI3).
We also showed the computational time for each algorithm,
given by the tic and toc functions of MATLAB. The best
results will be shown in bold in the following tables.

4.1. Data description

A test object (physical phantom), used for quality control, was
scanned with a 3T Prisma MRI scanner (Siemens Healthi-
neers, Erlangen, Germany). First, a high-resolution image
was obtained and was used as the ground truth for comparison
of the different SR reconstruction methods. The acquisition
used a turbo spin echo sequence to produce a groundtruth im-
age (HRIII) Z ∈ R224×224×224. The scan time for HRII was
6 min 30 s. The phantom LRI data were acquired with voxels
of size 1× 1× 8 mm3. The downsampling ratio between the
HRII and the LRI was d = 8, yielding D1 = D2 = D3 ∈
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R28×224. The acquisition of each of the three LRI in that case
took approximately 1 min.

The volunteer experiment was conducted on a 3T Signa
HDxt MRI scanner (General Electric, Milwaukee, USA). The
volunteer study was approved by an ethics committee and
written informed consent was obtained (ClinicalTrials.gov
identifier: NCT02887053). We acquired a HRII of the whole
brain. The acquisition used a fast gradient echo sequence
with a native resolution of 1 × 1 × 1 mm3 to produce a ref-
erence tensor Z ∈ R224×224×224. The scan time for HRII
was 8 min. Brain LRI data were obtained with voxels of size
1× 1× 4 mm3 (downsampling ratio of 4). The acquisition of
each LRI took approximately 2 min.

4.2. Performance for image reconstruction

For the physical phantom dataset, we ran RICOTTA with
multilinear ranks R = (220, 220, 30), weights λ1 = λ2 = 1
and λ3 = 0.8 and µ = 0.02. The reconstruction metrics
were available in Table 1 and slices of the original and recon-
structed HRII were displayed in Figure 2. RICOTTA yielded

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 20.951 0.9633 80.272 429.720 11.966

SR-T 18.091 0.9625 84.208 329.285 15.357
SR-B 19.808 0.9613 95.801 397.463 219.398

Table 1. Reconstruction for quality test phantom (d = 8).

R
e
fe

re
n
c
e

0

1000

2000

3000

R
IC

O
T

T
A

S
R

-T
S

R
-B

Fig. 2. Slices of the HRII for quality test phantom (d = 8).

better PSNR, CC and SI in the frontal dimension compared
to the SR-reconstruction method, but slightly lower SI in the
plane dimensions. It had the lowest computation time for our
implementation.

For the brain dataset, we ran RICOTTA with multilinear
ranks R = (220, 220, 50) and weights λ1 = λ2 = 0.2 and λ3

= 0.8. We set the value of the regularization parametrer µ =
0.001. The results were available in Table 2 and in Figure 3.

Alg. PSNR CC SI1,2 SI3 Time (s)
RICOTTA 24.764 0.9153 174.346 580.933 236.506

SR-T 22.557 0.8854 278.068 422.824 266.280
SR-B 22.709 0.8842 264.000 447.629 361.398

Table 2. Reconstruction for brain dataset (d = 4).
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Fig. 3. Slices of the HRII for real brain data (d = 4).

The proposed algorithm provided better PSNR and CC
than the state-of-the-art. In particular, the SI in the frontal
dimension was way higher than that provided by the SR al-
gorithms. RICOTTA had the lowest computation time. How-
ever, the in-plane sharpness index was the lowest.

5. CONCLUSION

In this paper, we proposed a novel tensor method for recon-
structing MRI high-resolution 3D volumes. The proposed
algorithm achieves exact reconstruction for a variety of mul-
tilinear ranks. Our simulations on real data shows that RI-
COTTA performs good reconstruction with a competitive
time. We hope that this work opens new perspectives on
using tensor factorization in medical imaging applications.
The proposed method should be applicable to a wide range
of MRI acquisition techniques. It could help improve the
trade-off between scan time, resolution, SNR and contrast in
MRI. Still several questions remain open, such as the choice
of the model parameters and how to increase the sharpness
in the plane directions. Different regularization operators can
be envisioned, such as Beltrami regularization. These matters
will be investigated in future works.
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