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Abstract—The growing adoption of biomedical machine vision
algorithms to perform detection, segmentation, and classification
tasks, is driving a shift in compression paradigms, progressively
replacing perceptual quality by performance of machine vision
tasks as the target encoding optimization. Therefore, improving
task performance rather than image quality has become a
new research problem in biomedical image compression. This
paper presents a contribution to extend the useful compression
range from lossless to lossy while keeping the performance of
biomedical machine vision algorithms. Automatic detection of
mitochondrias in electron microscopy images, using a learning-
based network (YOLO), is the case-study investigated in this
work. Two types of new results are presented in regard to detec-
tion performance. In the first one, it is shown that compression
ratios up to 15 can be used, for a maximum of 3% of detection
loss. Then in the second one, by using compressed images for
training, it is shown that the compression range can be increased
up to 135 times, while missing less than 5% of the detections.

Index Terms—Mitochondria detection, YOLO, biomedical im-
age coding, automatic detection, biomedical signal processing

I. INTRODUCTION

Advances in biomedical imaging technology are leading
to a significant increase in the amount of generated data. It
is estimated that nowadays, healthcare industry accounts for
more 30% of the data globally produced [1], and this increase
comes accompanied of new challenges, namely the capacity
to process, interpret, store, and transmit all the information,
keeping in mind their associated costs [2], [3]. Also, the
growing number of repetitive systematic jobs increased the
involvement of specialists in repetitive tasks, prompting the
development of machine vision solutions for automated image
analysis [4].

This permanent and growing pressure on existing resources
comes from two sides. On one hand, the need to capture and
preserve medical information, such as in diagnosis. On the
other hand, compliance with legal terms very often require
data to be stored for long periods of time, eventually leading
a scarcity of computational and storage resources [5]. In this
context, biomedical image data compression is necessary to
cope with such increasing demand.
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While coding algorithms allow to reduce the amount of
data used to represent the biomedical information, the inherent
distortion of lossy algorithms poses fidelity problems with
impact on the usefulness of coded data. This is the reason
for using lossless compression algorithms in many medical
applications [6]. However, since lossless compression ratios
are far from those obtained from lossy coding schemes, more
advanced approaches are required to preserve the relevant
biomedical information after lossy coding. This is similar
to visually lossless coding [7], but using biomedical task
performance as the objective measure.

Visual analysis of biomedical information through manual
identification and quantification of anatomic and cellular re-
gions is time consuming and prone to human factors. The
small size of relevant elements in high resolution images
combined with such human factors tend to produce variable re-
sults due to subjective analysis. Also, intra- and inter-observer
reliability has been acknowledged as a possible limitation that
should be properly accounted for [8]–[10].

A solution that has attracted much attention in recent years
consists in delegating the analysis task to machine vision
algorithms [11], which minimize the problems of human-
resource consumption and intra- and inter-operator reliability,
thus ensuring increased overall efficiency. In the biomedical
field, algorithms like YOLO [12] and U-Net [13], the latter
specially developed for biomedical image segmentation, have
been successfully used on the detection of the Malaria parasite
[14] and breast cancer [15] as well as cell counting [16],
among other applications.

Since higher compression ratios lead to higher coding
distortion and consequently lower performance of machine
vision tasks, two relevant research questions arise: i) what
are the upper compression boundaries that still preserve the
relevant information for detection algorithms? and ii) how can
such boundaries be extended in order to achieve the same per-
formance with higher compression ratios? This paper presents
a contribution for answering these two questions. In particular,
automatic detection of cellular structures (mitochondria) in
electron microscopy images is considered. An evaluation study
of compression ratio versus the YOLO’s capability to detect
mitochondria in electron microscopy images is first presented,
establishing an useful upper boundary for compression. Then
a new training methodology for learning-based machine vision
algorithms is proposed to extend the image compression range
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where performance of such algorithms can be maintained
above the same acceptable limit.

The remainder of the paper is organized as follows: Section
II presents background information on image compression
and object detection, as well as related work. In Section
III, the processing pipeline is described and results of
the experimental assessment presented, including a newly
proposed methodology. The concluding remarks are finally
presented in Section VI.

II. BACKGROUND

In clinical environments, the strict and conservative require-
ments of the DICOM standard [6] have been driving the use
and widespread adoption of traditional image coding technolo-
gies, such as JPEG2000 and JPEG-LS. However such encoders
are not always the best choice, as their level of compression
efficiency was already surpassed by more advanced encoders
such as HEVC [17]. In fact, as demonstrated in [18], when
used for lossless compression of medical images, the HEVC
encoder is able to achieve compression gains up to 43% higher
than other reference encoders.

Nevertheless, compression ratios obtained with lossless
algorithms are quite limited when compared to their lossy
counterparts. Even if not transversely to all applications, in
some cases the use of lossy compression for medical data,
may result in minimal or no negative impact. For instance, in
[19], it was shown that visually lossless coding can be used
to compress medical data with no negative impact in medical
diagnosis.

In recent years, many of the more repetitive and menial tasks
in the analysis of medical data, such as cell counting in blood
samples, and organelle identification in microscopy images,
have been transferred to machine vision algorithms [20]. These
algorithms have the advantage of being time invariant and not
suffering from intra- or inter-operator variability [21].

In the recent past, research in medical image analysis has
been advancing several application areas such as skin lesion
segmentation in dermoscopic images [22], (reporting over 93%
accuracy and 90% sensitivity), detection and segmentation of
the thyroid gland in ultrasound images [23] (with over 85%
correct detection and over 95% correct segmentation of the
thyroid gland), real time detection of and segmentation of lung
nodules in low dosage CT scans [24] (reaching 0.89 sensitivity
and 93% precision) and others e.g., detection of cholelithiasis
and gallstones in CT scans [25].

Nowadays, one of the most successful deep learning frame-
works for image analysis is the YOLO, namely its versions 3
and 4 [12]. This type of learning network is used for object
detection and classification of images of various classes. It
also has the added advantage of being fast, presenting good
performance for new classes (with moderately few samples)
after few epochs of training using transfer learning for large
datasets. In medical imaging, specifically for the task of
organelles (namely mitochondria) detection and segmentation,

the work presented in [26] employs the YOLO v4 with great
success.

III. METHODS AND EXPERIMENTAL SETUP

As previously mentioned, this study deals with detection
of mitochondrias in compressed electron microscopy images.
The YOLO object detection framework is used along with two
publicly available datasets [27]: Lucchi++ and Kasthuri++.
These datasets are re-annotated versions of data originally
made available by Lucchi et al. [28] and Kasthuri et al. [29],
which were verified and adjusted by a group of biologists
and neuroscientists. This led to significant changes, and the
new versions of the datasets present 20% less mitochondria
annotations than the original ground-truth. Additionally, the
overall area of the annotations increased by 20% for the
Lucci++ and 2% for the Kasthuri++ datasets.

The Lucchi++ dataset is provided in two sets, one for
training and one for testing, each one containing 165 images
with 1024×768 pixels, in 8-bit grayscale. The first set was
further (randomly) subdivided into 125 images for training
and 40 for validation. The Kasthuri++ dataset has also 2 sets:
one with 85 images with 1463 × 1613 pixels, and another
containing 75 images with 1334 × 1553 pixels, all in 8-
bit grayscale. Also in this case, the first set was randomly
subdivided into 61 images for training and 24 for validation,
while the second one was used for test.

The YOLO network was trained with a maximum of 6000
batches, a batch size of 16, and batch normalisation. The
stochastic gradient descent optimizer was used with a mo-
mentum term of 0.949 and a learning rate of 1.20× 10−3. A
step learning rate policy was used, thus after 80% and 90%
of the maximum number of batches, the learning rate was
decreased by 90%. In the first layer, each image was resized
to a resolution of 416× 416 pixels.

For data compression, the High Efficient Video Coding
(HEVC) standard was used, since it has demonstrated to
have a notable performance in medical images compression
[18]. Accordingly, the input images were coded using only
intra mode, with fixed quantization parameters (QP): 22, 27,
32, 37, 43, 47, and 51, i.e., suppressing possible variations
of delta QPs. To evaluate the compression performance, the
Compression Ratio (CR) was calculated for each dataset
according to

CR =

∑N
i=1 Size(ORIG(i))∑N
i=1 Size(COMP(i))

, (1)

where N is the total number of images in the dataset,
Size(ORIG(i)) is the number of bits of the uncompressed
image i, and Size(ORIG(i)) is the number of bits representing
the compressed image.

In this study, objective metrics related to the ability of
the YOLO network to detect the mitochondria before and
after compression were used. The performance of YOLO in
the detection mitochondrias in uncompressed and compressed
images was assessed in terms of the following well established
indicators: TP (true positives) and FP (false positives); in
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(a) Lucci++ dataset. (b) Kasthuri++ dataset.

Fig. 1. Mitochondria detection performance in compressed images: TP (green circle), and FP (orange triangle).

this type of studies the false negative rate (FN ) can be then
simply estimated from FN = 1 − TP . Using the current
implementation of YOLO (v4), the criteria for a successful
mitochondria detection (i.e. a TP ) is established in terms of
the well known IoU indicator, in the case

IoU =
Area of Overlap
Area of Union

≥ 0.5, (2)

meaning that the algorithms’ output and the annotated ref-
erence intersection area should represent at least 50% of
their union. In order to avoid spurious “noisy” detections, the
network was configured to ignore mitochondrias whose size
is less than 50 pixels.

IV. BOUNDS OF LOSSY CODING

The aim of the first stage of this study is determine the
upper bounds of lossy compression with reduced impact in
the YOLO’s detection performance. The images in test subsets
were encoded using HEVC with different QP values and, for
each one, the trained version of YOLO was used to identify the
mitochondrias. The results, in terms of average TP and FP for
the different compression ratios, using the prediction over un-
compressed images as reference, are presented in Figures 1(a)
and 1(b) for Lucchi++ and Kasthuri++, respectively.

The results make it clear that it is indeed possible to
compress this type of images with little-to-no impact on the
performance of the detection algorithm. In the case of the
Lucchi++ dataset, up to a CR of the order of 14 (QP32), the
degradation on TP and FP is barely noticeable (<2%); even
with CR ≈ 52 (QP 37) the average TP was found to be
around 95%. The same kind of behaviour was obtained with
the Kasthuri++ dataset, where fluctuations ≤ 1% are observed
up to CR ≈ 17 (QP 32); these results showed a remarkable
TP of around 98% for CR ≈ 32 (QP 37)1.

However, if the CR is increased beyond these values, then
the detection performance begins to be gradually affected. The
algorithm looses some ability to identify the mitochondria
region, as indicated by the drop of TP (the increase in FP
is only marginal). This behaviour can be understood on the

1As a reference, the JPEG2000 encoder achieves an average lossless CR
of 1.44 and 2.44 on Lucchi++ and Kasthuri++ datasets, respectively.

grounds of the coding distortions incurred by compressed
images, especially the well known smoothing due to the sup-
pression of higher spatial frequencies. They can be observed
in Figure 2, where it is clear that the loss of image detail
leads to higher number of undetected mitochondrias. It is
important to observe that the algorithm’s ability to identify
the mitochondrias, although dependent from the overall image
quality, is not as sensible as the human vision, as it can be
noted by the accurate detection of some mitochondria, even
in a blurry image such as Figure 2(b).

For comparison, visual quality metrics related to the human
visual system (PSNR and SSIM) obtained from the compres-
sion of both datasets with the chosen QPs are shown in Table I.
As a rule of thumb, PSNR below 35dB produce visually poor
images. In the proposed experiment the detection network was
able to detect with very good results even when the PSNR was
close to 30dB (QP 32 in Lucci++).

TABLE I
OBJECTIVE IMAGE QUALITY PER QP

Lucchi++
QP 22 27 32 37 43 47 51
CR 3.0 4.7 14.5 52.0 108.1 182.5 325.6

PSNR (dB) 41.2 35.8 30.0 28.2 27.0 25.8 24.4
SSIM 0.996 0.986 0.943 0.913 0.885 0.853 0.800

Kasthuri++
QP 22 27 32 37 43 47 51
CR 5.8 9.4 17.0 31.8 71.9 137.4 282.1

PSNR (dB) 43.2 38.2 34.2 31.1 27.7 25.6 23.7
SSIM 0.999 0.997 0.993 0.986 0.963 0.904 0.893

In resume, the set of experiments carried out made it clear
that it is possible to compress this type of electron microscopy
images, up to ≈ 1/15 th of its original size, with only a
residual impact in the ability of YOLO to still correctly
identify mitochondria regions.

V. EXTENDING THE COMPRESSION RANGE

In the light of the results found in section IV, a new
approach is devised to extend the useful range of compres-
sion ratios by mitigating the effect of higher CRs on the
performance of object detection. This is accomplished by
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(a) Image compressed with QP22.

(b) Image compressed with QP51.

Fig. 2. Detail of image 18 of test subset of dataset Lucchi++: TP (Green
bounding boxes), FN (red bounding boxes), and FP (orange bounding boxes).

using a different training approach for the learning-based
object detector (YOLO) using images coded with various CRs.
This is a transfer learning approach plus retraining, which
results in fine tuning the object detector by learning how
to identify mitochondria in compressed images. In spite of
coding distortion, which may remove some relevant features
and introduce additional ones, as inferred from Figure 2.

The training procedure used for this new detector follows
the same approach as the previous one, but the process starts
by loading the weights from the previous stage.The training
configurations that differ from the previous YOLO training are
the following: learning rate of 5×10−5 and maximum number
of batches of 10000. These changes in the training parameters
were due to the changes in the training set composition. In this
new approach each training, validation, and testing set include
not only the original images, but also a compressed version of
the images initially present in the subset. The following QPs
were used for compressing these images: 22, 27, 32, 37, 43,
47, and 51. This means that in this new training, the dataset
was expanded eight-fold. Table II shows the number of training
images in each dataset.

The results obtained with this new training approach are
presented in Figures 3(a) and 3(b) for the Lucchi++ and

TABLE II
NUMBER OF IMAGES IN THE TWO DATASETS

Training Validation Test

Original Lucchi++ 125 40 165
Kasthuri++ 61 24 75

Original + compressed Lucchi++ 1000 320 165
Kasthuri++ 488 192 75

Kasthuri++ datasets, respectively. For comparison purposes,
the previous results are also shown, in dashed lines. As can
be observed in these figures, with the new proposed training
approach it is possible to further extend CRs with little
performance degradation; in the Lucchi++ dataset, at CR=108
is still possible to reach about 87% in TP , with FP below
3% (F1 score ≈ 92%). Even better figures were obtained for
dataset Kasthuri++ where, even for CR=137, TP is around
97% and FP below 4% (F1 score ≈ 96%); in terms of quality
metrics, according to Table I, this means extending the useful
operational range down to around 27dB. It is worth mentioning
that, since the network is designed to detect a broader range
of objects, its overall performance can be slightly affected for
the lower QPs, that is, when the compressed image is still very
similar to the original uncompressed one. However, as the level
of coding distortion in the images increases, the performance
of the proposed approach rapidly surpasses that of the previous
one.

In summary, these results demonstrate that automatic mito-
chondria detection may perform equally well in uncompressed
images and compressed up to CRs of 15. This means that
lossless CRs can be extended to lossy CR of 15 while still
keeping the performance of detection algorithm (YOLO). If
the detection network is trained using compressed versions of
the dataset, then the compression ratio of 15 can be further
extended over 108 in Lucci++ and 135 in Kasthuri++.

VI. CONCLUSION

This paper addresses a current prominent challenge in
biomedical imaging applications: how to increase compression
ratios of biomedical imaging data, while preserving its essen-
tial information for machine vision tasks, such as detection
of mitochondrias in electron microscopy images using YOLO.
The results demonstrate that it is possible to reduce the amount
of data required to represent these type of images, up to 1/15
of its original size, with barely no impact on the ability to
correctly identify the mitochondrias with YOLO. Moreover,
with recourse to the proposed training methodology, that uses
compressed versions of the original data incorporated in the
training set, it is shown that the compression range can be
further extended, reaching CRs of the order of 100, with little
impact on performance of the detection algorithm.

As future work, the proposed methodology will be used for
other biomedical types of images, and also considering the
state-of-the-art VVC encoder.
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(a) Lucchi++ dataset. (b) Kasthuri++ dataset.

Fig. 3. Mitochondria detection performance of the proposed method in compressed images: TP (green circle) and FP (orange triangle), proposed method
(solid lines), and previous results (dashed lines).
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