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Abstract—Glaucoma is one of the most prevalent causes of
irreversible blindness worldwide. In clinical practice, the most
commonly used methods for diagnosing glaucoma are based
on fundus and Optical Coherence Tomography (OCT) imaging,
tonometry, perimetry and campimetry. OCT image is better
suited to detect changes in disease progression than other existing
imaging techniques. In addition, using the mean defect index
(MD), the campimetry test allows evaluating the evolution of
visual field loss. Convolutional Neural Networks (CNNs) can facil-
itate automatic diagnosis and grading of glaucoma. However, few
studies have addressed this issue using OCT images. In this paper,
we aim to improve the grading of glaucoma patients through a
neural network that combines the information provided by both
tests, OCT images and MD index. Using a two-term loss function
(Lc and LR), the proposed framework obtains from an OCT
image the glaucoma grade as well as its corresponding MD value.
This methodological core outperforms the classification baseline
framework by 3.21%, getting a test accuracy of 0.9259. This
approach would not only improve the classification of glaucoma
but also extracts the MD index from OCT images without the
need for a visual field (VF) test.

Index Terms—Glaucoma grading, Mean defect, Optical Coher-
ence Tomography, Convolutional Neural Networks

I. INTRODUCTION

Glaucoma has been recognised as one of the leading causes
of blindness worldwide. It is defined as a chronic progressive
neurodegenerative disease characterized by the progressive
loss of retinal ganglion cells (GCs) and the nerve fiber layer
(RNFL) [1]. Early stages are usually asymptomatic, and thus
most patients with glaucoma already have late-stage disease
with substantial irreversible visual loss when they present
to ophthalmologists [2]. This is because the damage to the
optic nerve fibers becomes noticeable and reduction in visual
field is detected when about 40% of axons are already lost
[3]. Therefore, an early treatment of this chronic disease is
essential for timely treatment to prevent the complete and
irreversible vision loss.

Currently, the primary methods of glaucoma detection in-
clude measurement of pressure in the eye (tonometry), assess-
ment of the impact on functional vision through visual field
tests (campimetry or perimetry), optic disc examination on
fundus images and evaluation of retinal thickness changes via
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optical coherence tomography (OCT). Regarding the detection
of glaucomatous structural changes by imaging, it has relied
on the assessment of optic disc photographs. In fact, the
majority of studies in literature are dedicated to the analysis on
fundus images [4]–[8]. However, agreement among glaucoma
specialists in judging change on disc photographs is only slight
to fair, and photographs do not allow quantification of rates
of change [9]. Although fundus imaging is cheaper and more
useful for diseases such as age-related macular degeneration
or diabetic retinopathy, OCT analysis is the technique par ex-
cellence for detecting and evaluating glaucoma. Unlike fundus
imaging, this technique provides a 3D projection of the retina
to measure the deterioration of the nerve fibre layers, which in
the clinical literature has been identified as the structure that
evidences the progression of glaucoma [10]–[12].

In the last few years, deep learning has been at the forefront
of imaging techniques for glaucoma assessment. Ali et al pre-
sented an automatic detection of early and advanced glaucoma.
They used the transfer learning technique by fine-tuning over
the ResNet-50 and GoogLeNet architecture for the early as
well as advanced glaucoma detection using fundus images [8].
In line with this work, in [13], the authors used a pre-trained
GoogleNet Inception v3 model for transfer learning over a
dataset of 1542 images.

Most glaucoma grading studies have been done with fundus
imaging [3], [7], [8], [13], but only [14] and [10] use OCT
images for this task. Therefore, OCT imaging has been used
mainly for the detection of the disease [15]–[18].

Several criteria have been used to stating the glaucoma [19],
among them stand up the Hodapp-Parrish-Anderson (HPA)
[20]. The main metric for measuring vision loss is the mean
defect (MD) index, mathematically represented as the average
of the individual visual field defects of all test location,
expressed in decibels (dBs), as follows:

MD = 10 · log

(
1

N

N∑
i=1

di

)
di = ni − xi (1)

where ni and di are the normal value and the sensitivity
loss at test location i, respectively. This index allows for the
overall assessment of the glaucoma severity, being essential
to determine the progression of the disease [21]. If a visual
field defect worsens, independent of whether it is a local or
a diffuse defect, MD will worsen too (see Fig. 1). Therefore,
MD is relevant for the classification of patients according to
the degree of glaucoma progression.
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Fig. 1. Different visual fields with increasingly severe visual field loss [21].

To the best of the authors’ knowledge, the proposed method
is the first aimed at grading glaucoma from OCT images using
the MD value to improve the predictions. By adding a regres-
sion module, the proposed framework is able to estimate the
MD value from OCT images. The whole method is optimized
through a custom weighted loss function composed of two
terms: classification and regression. This study compare results
between only classification and the proposed methodology by
adding a MD prediction module. The ablation experiments
conducted in this paper evidences the improvement of the
predictive ability when the MD information is included in the
network via backward-propagation.

II. METHODS

A. Baseline for staging Glaucoma

Formally, the training set can be denoted as D = {X,A, Y }
in which X and A are the inputs and Y the associated ground-
truth set. X = {x1, x2, ..., xi, ..., xN} is the set of OCT input
images, where each xi has 248 × 384 dimensions. Second
input, A = {a1, a2, ..., aj , ..., aP } represents the age of each
patient j, where P is the total number of patients. Finally, yi
∈ Y denotes the glaucoma grade class to which each sample
belongs, which can take three values: 0 - normal, 1 - early to
moderate or 2 - advanced, depending on the MD index.

As shown in Fig. 2, the backbone of the proposed network
is based on the VGG16 architecture. According to [22], fine-
tunning with VGG16 gives better performance in glaucoma
classification than other state-of-art networks. During the
training process, a fine-tuning strategy was employed, freezing
VGG16 layers and transferring knowledge acquired when
the network was trained with the ImageNet dataset [23].
This module aims to extract features from the input images
(xi) from by applying convolution and pooling operations,
returning a vector zi ∈ Z. Therefore, this module could be
expressed as fθ : X → Z.

An attention module gϕ was included to focus on glaucoma-
specific features aimed at improving the learning process. This
module is composed of convolutions and squeeze-excitation
blocks which improve the performance of the models adapta-
tively recalibrating the feature maps in the spatial axis [24].
This module returns a vector ti ∈ T .

Lastly, the top model (hγ) returns the glaucoma stage
by using a softmax activation function which calculates the
probability of the samples to belong to each of the n classes,
according to Ŷ = max[Pj(Yj |xi)], j = 1, 2...n.

For the optimization of the proposed architecture, we used
the Categorical Cross-Entropy loss function, which calculates

the difference between n distributions, being n the number of
classes of the output as:

Lc = −
n∑

i=1

yi · log(ŷi), n = 3 (2)

B. MD index constraint

In some situations, the analysis of OCT images is insuffi-
cient for glaucoma grading and, therefore, information from
the VF test should be included. The present methodology
aims to add a constraint in the baseline model to predict
the MD value from the OCT-extracted features. Based on
these ideas, the proposed MD constraint lies in the inclusion
of a regression module at the end of the baseline model to
predict the MD value. The combination of classification and
regression losses for the model optimization enhances the
glaucoma classification.

The proposed architecture can be observed in Fig. 2 A). The
regression module is introduced after the classification layer
to predict MD index from the probability of belonging to each
glaucoma class (pi) as Reg(p;wr) =

∑N
i=1(pi ·wr

i ), being wr
i

the regression weights per class adjusted during training.
The ground truth set in this module can be denoted as B,

where bi ∈ B is each of the MD values associated with
each image. The loss function selected in this phase was the
Minimum Squared Error (MSE):

Lr =
1

N

N∑
i=1

(bi − b̂i)
2 (3)

During the training, this term was combined with the
classification loss function as shown in Figure 2 B). The λr is
a parameter to optimizes the effect of regression on learning.
The final loss function can be expressed as:

L = Lc + λrLr (4)

Note that MD values are used for optimizing the parameters
of the network and not for the prediction phase. In this way,
with the proposed framework, it is possible to obtain the MD
value without performing a VF test.

III. ABLATION EXPERIMENTS

A. Dataset

The experiments detailed in this paper were performed on a
private database composed of 258 OCT images of 496×768×3
pixels. In particular, 117 normal, 55 early to moderate and 86
severe glaucomatous circumpapillary samples were analysed.
Each B-scan was diagnosed by experts ophthalmologists.
Note that Heidelberg Spectrallis OCT system was employed
to acquire the circumpapillary OCT images with an axial
resolution of 4-5 µm. In he Hodapp-Parrish-Andersib system,
early-moderate defects are characterized by an MD ranging
from 6 to 12 dB, and severe visual filed defects have an MD
worse than 12 dB. Therefore, classes can be denoted as:
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Fig. 2. A) Proposed CNN architecture to predict glaucoma grade and MD index from OCT input images. B) Combining loss functions of glaucoma grade
and MD index predictions.

yi =

 Normal : 0 if MD < 6dB
Early −moderate : 1 if 6 < MD < 12dB
Advanced : 2 if MD > 12dB

(5)

The data was partitioned into two sets: train (80%) and test
(20%). K-Fold technique was used for cross-validation with
K = 5, dividing train data into five partitions, using four
for train and one for validation in each of the five iterations.
The database contains OCT images from the right and left
eyes of the patients as well as MD parameters obtained from
the VF test. The data partitioning was carried out at the
patient level to ensure that images from both eyes of a specific
patient belong to the same fold. We carried out this procedure
to avoid including the same patient’s images in the training
and validation dataset. The database contains more patients
belonging to the normal class; however, the early-stage class
comprises significantly fewer images. Classes were balanced,
being randomly removed from each class in the different
folds to guarantee equal learning across all classes during
training. Before discarding samples, we performed a weighted
classification loss function, enhancing the under-represented
classes; however, this methodology led to worse results.

B. Selection of regression parameters

We performed an in-depth empirical exploration to select the
optimal hyperparameter combination. The model was trained
by optimising the result of the expression (4), an adaptive
learning rate of 10e-4, with a decrease of 0.9 after 10 not-
improved epochs in terms of validation loss. The learning
process was addressed utilizing the Adadelta optimizer, using
batches of 16 samples during 350 epochs.

In order to determine the optimal network configuration in
terms of accuracy, a series of experiments have been carried

out by changing different parameters. Fig. 3 shows the average
accuracy and standard deviation achieved in the validation
samples depending on the weighting factor λr included in
the regression loss function, and the activation function of
the regression layer. These results evidence that the use of
a regression term improves the performance of the glaucoma
classification. Nevertheless, using a too large slope once the
constraint is satisfied (λr = 2) can lead to a worsening of
the results. Thus, we selected λr = 2, which provides the
best results in the validation cohort. The sigmoid activation
resulted in the most accurate function for glaucoma grading,
as depicted in Fig. 3. After this ablation experiment, we
concluded that the best network configuration was weigh the
regression loss function by 2 and use the sigmoid as the loss
function.

Fig. 3. Mean ± standard deviation of the accuracy value according to the
weighting factor λr of the regression loss function and the regression layer
activation function (linear or sigmoid).
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TABLE I
VALIDATION RESULTS OF BASELINE (BL) AND PROPOSED MODEL (PM) USING λr = 2.

Normal Early to moderate Advanced MicroAvg MacroAvg
BL PM BL PM BL PM BL PM BL PM

SN 0.99±0.02 0.99±0.02 0.36±0.24 0.83±0.18 0.92±0.05 0.79±0.22 0.84±0.05 0.89±0.08 0.76±0.09 0.86±0.10
SP 0.95±0.04 1.00±0.00 0.97±0.02 0.90±0.10 0.82±0.07 0.94±0.05 0.92±0.03 0.95±0.04 0.92±0.03 0.95±0.04
PP 0.94±0.05 1.00±0.00 0.74±0.17 0.74±0.21 0.74±0.10 0.91±0.08 0.84±0.06 0.89±0.08 0.81±0.04 0.86±0.09
NP 0.99±0.02 0.99±0.01 0.86±0.06 0.96±0.04 0.95±0.03 0.90±0.08 0.92±0.03 0.94±0.04 0.93±0.02 0.95±0.04
FS 0.97±0.03 0.99±0.01 0.45±0.19 0.76±0.17 0.81±0.05 0.82±0.15 0.84±0.06 0.89±0.08 0.74±0.10 0.85±0.10
AC 0.97±0.02 0.99±0.01 0.84±0.05 0.89±0.08 0.86±0.04 0.89±0.07 0.89±0.04 0.93±0.05 0.89±0.04 0.93±0.05

IV. PREDICTION RESULTS

A. Validation Results

In this stage, the proposed architecture is compared with
the baseline to determine the positive effect that MD predic-
tion has on the classification. Therefore, different figures of
merit as sensitivity (SN), specificity (SP), positive predictive
value (PP), negative predictive value (NP), F1-score (FS), and
accuracy (AC) were considered.

Table 1 shows the metrics provided by the baseline (BL)
classification architecture and the proposed method (PM),
of each class, and the micro-average and macro-average.
Focusing on the accuracy value, the proposed method im-
proves results in each of the classes, increasing on average
approximately 4.4%. Furthermore, it is noteworthy that the
sensitivity and specificity are improved by adding the regres-
sion constraint, reaching micro-average values of 0.8908 and
0.9454, respectively. The proportion of images from each class
in the validation set is not equal, with more samples in the
healthy class than in the other two. This is why in some figures
of merit in the early to moderate and advanced categories, the
standard deviation between folds is higher than expected.

The proposed model can predict the MD value with losses of
0.1155, which places the proposed model as the most suitable
predictor for future occasions.

B. Test Results

The model was evaluated with the test dataset during the
prediction stage. In Table 2, we report the results of each class
and the micro average and macro average achieved from the
baseline and proposed method. These results demonstrate that
the proposed methodology outperforms the baseline for all
the figures of merit in all stages of glaucoma development.
By optimally adjusting the weighting value of the regression
loss function, the model aims to serve as a tool for healthcare
professionals with an accuracy of 92.59%, being higher in
the detection of normal patients (100%) and maintaining
accuracy of 88.89% in the classification of patients with early
to moderate and advanced glaucoma.

In addition, the results have been compared with other
state-of-the-art methods, such as those presented in [14]. In
this paper, they proposed different approaches to glaucoma
grading: Conventional Multi-class (CM), Static Prototypes
(SP) and Dynamic Prototypes (DP). The latter is the one that
provided the best performance, and that is why in Table 3

Fig. 4. Class activation maps (CAMs). Heat maps extracted from the proposed
architecture at the output from the attention module.

the proposed model (PM) is compared with DP. Our approach
improves most of the figures of merit; however, it is neither
a direct nor a completely objective comparison because the
databases are different. Moreover, it would be of valuable
interest to perform an external validation with other databases
to evaluate the performance of the proposed method; however,
there are no public databases of OCT images containing
glaucoma annotations.

C. Qualitative results

The qualitative class activation maps (CAMs) shown in Fig.
4 represent the activation provided by the attention module.
It can be seen that for class differentiation, the activation is
mainly in the RNFL structure, which is directly in line with the
clinicians’ opinion, who perform the classification according to
the thickness of the RNLF. The tendency of activations varies
by class. In the normal class, the model focuses its activation
on the whole retina, while in the early to moderate class, it
is on the RNLF. Finally, activation is concentrated in more
specific areas in advanced glaucoma.

V. CONCLUSION

In this study, a new methodology has been proposed to
improve the classification of glaucoma progression by adding
a regression constraint which will affect the optimisation of
the parameters in the training process. By combining the
loss classification and weighted regression loss functions, the
proposed model has demonstrated to improve the glaucoma
grading performance. In addition, the model can predict the
MD index with a value of 0.1155 in the losses, which provides
a great added value to the body of knowledge, as glaucoma
can be graded without incurring additional visual field tests.
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TABLE II
TEST RESULTS OF BASELINE (BL) AND THE PROPOSED MODEL (PM).

Normal Early to moderate Advanced MicroAvg MacroAvg
BL PM BL PM BL PM BL PM BL PM

SN 1.0000 1.0000 0.5952 0.7143 0.8333 0.8750 0.8457 0.8889 0.8095 0.8631
SP 0.9667 1.0000 0.9417 0.9500 0.8684 0.8947 0.9228 0.9444 0.9256 0.9482
PP 0.9600 1.0000 0.7812 0.8333 0.7273 0.7778 0.8457 0.8889 0.8228 0.8704
NP 1.0000 1.0000 0.8692 0.9048 0.9252 0.9444 0.9228 0.9444 0.9315 0.9497
FS 0.9796 1.0000 0.6757 0.7692 0.7767 0.8235 0.8457 0.8889 0.8107 0.8643
AC 0.9815 1.0000 0.8519 0.8889 0.8580 0.8889 0.8971 0.9259 0.8971 0.9259

TABLE III
TEST RESULTS OF THE PROPOSED MODEL (PM) AND THE DYNAMIC PROTOTYPES (DP) MODEL PROPOSED IN [14].

Normal Early to moderate Advanced MicroAvg MacroAvg
DP PM DP PM DP PM DP PM DP PM

SN 0.9333 1.0000 0.6667 0.7143 0.8333 0.8750 0.8182 0.8889 0.8112 0.8631
SP 1.0000 1.0000 0.9048 0.9500 0.8519 0.8947 0.9091 0.9444 0.9189 0.9482
PP 1.0000 1.0000 0.8000 0.8333 0.5556 0.7778 0.8182 0.8889 0.7857 0.8704
NP 0.9474 1.0000 0.8210 0.9048 0.9583 0.9444 0.9091 0.9444 0.9106 0.9497
FS 0.9655 1.0000 0.7273 0.7692 0.6667 0.8235 0.8788 0.8889 0.8788 0.8643
AC 0.9697 1.0000 0.8182 0.8889 0.8485 0.8889 0.8788 0.9259 0.8788 0.9259
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