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Abstract—Transformer-based models (i.e., Fusing-TF and
LDTF) have achieved state-of-the-art performance for electro-
cardiogram (ECG) classification. However, these models may
suffer from low training efficiency due to the high model
complexity associated with the attention mechanism. In this
paper, we present a multi-layer perceptron (MLP) model for ECG
classification by incorporating a multi-scale sampling strategy
for signal embedding, namely, MS-MLP. In this method, a
novel multi-scale sampling strategy is first proposed to exploit
the multi-scale characteristics while maintaining the temporal
information in the corresponding dimensions. Then, an MLP-
Mixer structure with token-mixer and channel-mixer is employed
to capture the multi-scale feature and temporal feature from the
multi-scale embedding result, respectively. Because of the mixing
operation and attention-free MLP structure, our proposed MS-
MLP method not only provides better classification performance,
but also has a lower model complexity, as compared with
transformer-based methods, in terms of experiments performed
on the MIT-BIH dataset.

Index Terms—ECG classification, Multi-scale embedding,
Transformer, MLP-Mixer

I. INTRODUCTION

The aim of electrocardiogram (ECG) signal classification
is to classify the ECG signals according to their components
(e.g., P wave, QRS complex and T wave) [1], and to provide
assistance for the diagnosis of cardiovascular disease. Re-
cently, deep learning technique has been successfully applied
for ECG classification, achieving state-of-the-art performance
[2]–[8]. ECG classification models based on deep learning
mainly include two stages, namely, signal embedding and
model learning, where the signal embedding stage aims to
embed the original ECG signal into a latent space with a
certain dimension that can facilitate the learning of the deep
model, and the model learning stage is to train the deep
model to classify the signal based on the latent feature.
According to the methods used for signal embedding, existing
deep learning methods for ECG classification can be divided
into two categories: models using original ECG signal as the
embedding feature [9]–[11], and models using preliminary
feature of the original ECG signal as the embedding feature
[3], [7], [8]. For the first type, the original ECG signal is
converted to an image as the embedding, and then a deep
model, such as convolutional neural network (CNN), is used
to capture morphological features from the area centered at a
certain peak data point in the model learning stage [9]–[11].
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However, without feature extraction, the noise contained in
the embedding often limits the learning ability of the deep
learning model, and degrades its classification performance.

As for the second category, deep learning methods (e.g.,
1-D CNN) [7] or traditional signal processing methods (e.g.,
discrete wavelet transform, DWT) [3], [8] are often employed
to design the preliminary features as the embedding result,
which helps the deep models learn more effective features
and achieve better classification performance. For example, in
[7], a transformer-based method, i.e., Fusing-TF, adopts a 1-
D CNN layer and a positional encoding function to obtain a
64-D embedding result with additional temporal information.
However, the use of 1-D CNN for signal embedding may
lead to the loss of temporal information from the original
signal. To address this limitation, another transformer-based
method LDTF [8] is proposed, in which a low-dimensional
denoising embedding (LDE) method is introduced to embed
the signal into a low-dimensional space by using DWT and
fast Fourier transform (FFT) to extract the temporal-spectral
feature simultaneously. Therefore, the LDTF achieves better
performance with fewer parameters than Fusing-TF. Although
these transformer-based methods have achieved state-of-the-
art performance for ECG classification, both Fusing-TF and
LDTF suffer from low training efficiency due to the complex
transformer structure and the use of self-attention mechanism
[12].

In this paper, we propose a novel multi-scale sampling MLP
architecture, namely MS-MLP, for ECG classification, which
can improve the classification performance with high training
efficiency and low model complexity. The proposed method
includes two stages: multi-scale sampling based embedding
(MSE) and MLP learning. First, a novel multi-scale sampling
strategy is proposed to map the original ECG signal to a
low-dimensional latent space. Here, the multi-scale sampling
strategy can not only exploit the multi-scale characteristics
of the original ECG signal, but also maintain the temporal
information with respect to these multi-scale characteristics
in the corresponding embedded dimensions.Then, in the MLP
learning stage, an MLP-Mixer structure [13] with token-mixer
and channel-mixer is employed to capture the multi-scale
feature and temporal feature from the multi-scale embed-
ding result, respectively. Because of the mixing operation,
we can achieve effective feature learning, thus improve the
classification performance. In addition, as the mixers in MLP-
Mixer are mainly realized by fully connected neural network
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Fig. 1: Framework of the proposed MS-MLP model, which consists of two stages: multi-scale sampling based embedding
and MLP learning. Here, “⊤” and “⋊⋉” denote transposition operation and concatenation operation, respectively. “⊕” is the
summation operation.

(FCN) without using the complex structure (e.g., encoder-
decoder) and the attention mechanism as in transformer, our
proposed MS-MLP can achieve better training efficiency with
lower complexity. The experiments performed on the MIT-
BIH dataset [14] demonstrate the effectiveness of our proposed
method.

Our contributions can be summarized as follows:

• We propose a novel multi-scale sampling based em-
bedding method to obtain a lower dimensional feature
than LDTF and Fusing-TF, while preserving the temporal
information in the corresponding dimension in the em-
bedding, which is often lost in other embedding methods,
e.g., 1-D CNN in Fusing-TF. The proposed embedding
can be also applied in other signal processing tasks.

• We introduce the MLP-Mixer for classification, where
token mixing is performed to exploit the multi-scale
features with different frequency bands from inter-
dimensions of the embedding, and channel-mixer is
performed to exploit the temporal features from intra-
dimension of the embedding.

• Thanks to the attention-free mechanism, our proposed
MS-MLP can improve the training efficiency with 30.41
FLOPs and around 25 epochs, outperforming the-state-
of-the-art methods, i.e., Fusing-TF (482.56 FLOPs) and
LDTF (85.06 FLOPs) with more than 100 epochs.

The remainder of the paper is organized as follows: Section
2 presents the proposed model in detail; Section 3 shows the
experimental results; and Section 4 concludes the paper.

II. PROPOSED METHOD

In this section, we introduce our proposed MS-MLP
method, which consists of a multi-scale sampling based
embedding stage and an MLP learning stage. The overall
framework of the MS-MLP architecture is illustrated in Fig. 1,
and the details are given next.

A. Multi-Scale Sampling Based Embedding
In [15], a multi-resolution CNN structure with different

kernel sizes is presented to extract features corresponding
to different frequency bands of the electroencephalogram
(EEG) signal, and obtain effective multi-scale features for
sleep stage classification. Inspired by this idea, we propose
a multi-scale sampling strategy for ECG signal embedding,
which can extract the characteristics from the original signal
with different sampling intervals corresponding to different
embedding dimensions, such that we can achieve multi-scale
embedding while preserving the temporal information of the
signal embedded in each dimension. This is because the
sampling interval used provides an indication of the sampling
rate used for data collection.

Let X ∈ R2×ℓ be the two-channel input ECG signal with
the length ℓ, and xi ∈ R1×ℓ be the i-th channel ECG signal,
i ∈ {1, 2}. Then, xi can be expressed as

xi = [xi,0, xi,1, · · · , xi,j , · · · , xi,ℓ−1] (1)

where xi,j represents the j-th data point of xi, and j ∈
{0, 1, · · · , ℓ− 1}.

To achieve multi-scale embedding, we define sampling
interval as k with different values that correspond to different
embedded dimensions. This means, for each dimension, we
use a different sampling frequency to obtain data points from
the ECG signal.

Then, the sampling points with an interval of k are succes-
sively selected from the original ECG signal to form a series
of new sub-sampled signals xm,k

i , m ∈ {0, 1, · · · , k − 1}.
Here, xm,k

i represents the signal sub-sampled from the m-
th sampling point of xi for sampling interval k, denoted as
follows

xm,k
i = [xi,m, xi,m+k, · · · , xi,m+(n−1)k, xi,m+nk] (2)

where m+ nk ≤ ℓ− 1, and n is a natural number.
As a result, we can obtain the embedding result x̂k

i ∈ R1×ℓ

with sampling interval k for one specific embedding dimen-
sion, as follows
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x̂k
i = [x0,k

i ,x1,k
i , · · · ,xm,k

i , · · · ,xk−1,k
i ] (3)

Note that, the sampling interval k is different for each em-
bedding dimension. Here, k with four interval values (i.e.,
k ∈ {1, 2, 3, 4}) are used for sampling the embedding cor-
responding to each dimension, respectively.

Therefore, for the original two-lead ECG signal X, we can
obtain a more effective multi-scale representation Xmse ∈
R8×ℓ by concatenating the embedding vector of each dimen-
sion, as follows

Xmse = [x̂1
1; x̂

1
2; x̂

2
1; x̂

2
2; x̂

3
1; x̂

3
2, x̂

4
1; x̂

4
2] (4)

B. MLP Learning

With the multi-scale embedding, we can use an MLP
architecture [13] with token-mixer and channel-mixer which
allow more effective latent feature to be exploited from inter-
dimension (i.e., mixing multi-scale features of different dimen-
sions) and intra-dimension (i.e., mixing temporal information
within the same dimension) due to the mixing operation. In
addition, with the simple attention-free MLP structure, our
proposed MS-MLP method achieves efficient model training
with low complexity, which will be illustrated in Section III.

The MLP learning part of our model consists of 6 MLP
blocks, an average pooling layer and a fully connected layer.
Here, each MLP block contains two mixers, i.e., token mixer
and channel mixer, as shown in Fig. 1.

Denote Yh−1 as the input of the h-th MLP block, which
is initially set as Y0 = Xmse, h ∈ {1, 2, · · · , 6}, and Yh−1

∗,s
as the s-th column of Yh−1, with s ∈ {1, 2, · · · , ℓ}, where
“∗, s” means the s-th column is selected. Then, to exploit the
multi-scale features from inter-dimensions, a mixing operation
via token-mixer is conducted on each column of Yh−1 with
shared transform matrices Wh−1

1 , and Wh−1
2 as follows

Uh
∗,s = Yh−1

∗,s +Wh−1
2 · σ(Wh−1

1 · N (Yh−1
∗,s )) (5)

where Uh
∗,s is the s-th column of Uh, σ(·) and N (·) are the

GELU function and layer normalization function, respectively.
After that, for the purpose of learning temporal feature

from intra-dimension, another mixing operation via channel-
mixer is performed on each row of Uh with shared transform
matrices Wh−1

3 and Wh−1
4 as follows

Yh
q,∗ = Uh

q,∗ +Wh−1
3 σ(Wh−1

4 · N (Uh
q,∗)) (6)

where Uh
q,∗ and Yh

q,∗ denote the q-th row of Uh and Yh,
respectively, and “q, ∗” means the q-th row is selected, with
q ∈ {1, 2, · · · , 8}.

Finally, we can get the output of MLP blocks Ŷ = Y6, and
obtain the classification result via an average pooling layer and
a fully connected layer, expressed as follows

z = softmax(W ·AvgPooling(Ŷ)) (7)

where W denotes the weight matrix of the fully connected
layer, softmax(·) and AvgPooling(·) represent the softmax
function and average pooling operation, respectively.

III. EXPERIMENTS AND RESULTS
A. Experimental Setup
Dataset We evaluate our method on the MIT-BIH dataset
[14], which consists of two-channel ECG recordings from 48
patients, sampled at 360 Hz. In our experiments, 5 essential
arrhythmia groups (i.e., N, S, V, F, Q) from MIT-BIH are
employed for evaluation, which are specified by the American
Association of Medical Instrumentation (AAMI) standard as
shown in Table I.

TABLE I: ECG signal classification standard specified by
ANSI/AAMI EC57 and the number of samples for each class
in our dataset.

Groups ECG classes Number
N Normal (N) 75,017

Left Bundle Brunch Block (L) 8,071
Right Bundle Brunch Block (R) 7,255
Atrial Escape (e) 16
Nodal (junctional) escape (j) 229

S Atrial Premature (A) 2,546
Aberrant Atrial Premature (a) 150
Nodal (Junctional) Premature (J) 83
Supra-ventricular Premature (S) 2

V Premature Ventricular Contraction (V) 7,129
Ventricular escape (E) 106

F Fusion of Ventricular and Normal (F) 802
Q Paced (/) 7,023

Fusion of Paced and Normal (f) 982
Unclassifiable (Q) 33

In our study, 80% ECG segments from each class are used
as the training set, and the remaining 20% are used as the test
set, following [3], [16], [17]. For each ECG segment, 300 data
points are sampled centred at the R peak point [18], i.e. the
largest sampling point in one heart beat cycle, which indicates
depolarization of the main mass of the ventricles.
Implementation Details For data pre-processing, the synthetic
minority over-sampling technique (SMOTE) algorithm and Z-
score normalization are adopted to solve the class imbalance
and amplitude scaling problems, respectively [19]. The hyper-
parameters settings are provided in Table II.

TABLE II: Setting of hyper-parameters for model training
Selected hyperparameters

Loss function = Cross-Entropy, Optimizer = SGD,
Learning rate = 0.001, Batch size = 64

ECG segment length = 300, MLP-Mixer block number = 6

Performance Metrics The performance metrics in terms of Re-
call (Rec), Precision (Pre) and Accuracy (Acc) are employed to
evaluate the classification performance of our method, which
are calculated as

Rec =
TP

TP + FN
(8)

Pre =
TP

TP + FP
(9)

Acc =
TP + TN

TP+ FP + FN+ TN
(10)
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TABLE III: Comparison of our proposed method with baseline methods in classification performance and model complexity.

Model FLOPs (M) Rec (%) Pre (%) Acc (%)
N S V F Q N S V F Q N S V F Q

WCNN - 99.66 87.68 98.05 82.76 99.58 99.44 93.35 97.11 94.12 99.58 99.25 99.54 99.68 99.82 99.94
Fusing-TF 482.56 98.47 98.14 97.72 99.73 99.44 97.82 99.10 98.61 98.30 99.75 99.26 99.47 99.29 99.60 99.83

LDTF 85.06 98.00 98.49 97.86 99.93 99.50 98.40 99.10 98.40 98.24 99.69 99.28 99.53 99.28 99.63 99.83
MS-TF 85.06 92.95 93.19 95.44 95.22 98.45 93.26 94.82 92.37 95.72 99.06 97.25 97.70 97.61 98.19 99.47

MS-MLP 30.41 98.60 99.17 98.55 100.00 99.63 98.73 99.17 99.10 99.27 99.69 99.47 99.68 99.55 99.85 99.85

(a)

(b)
Fig. 2: Recall curves comparison between our proposed MS-
MLP and the transformer-based models on the training and
test set, respectively.

Here, TP and TN denote the true positive and the true negative,
respectively. FP and FN denote the false positive and the false
negative, respectively. In addition, we employ FLOPs as the
metric for the evaluation of model complexity.

B. Experimental Result

Performance Comparison We compare our proposed MS-
MLP with other state-of-the-art methods (i.e., WCNN [3],
Fusing-TF [7] and LDTF [8]). Here, WCNN is the method

exploiting multi-scale features, whereas Fusing-TF and LDTF
are the two state-of-the-art transformer-based methods. In
addition, to show the effectiveness of the proposed multi-scale
embedding strategy, we introduce a multi-scale sampling based
transformer method (i.e., MS-TF) for performance evaluation,
by replacing the LDE of the LDTF model with our MSE for
signal embedding. The results are given in Table III.

From Table III, we can see that our proposed MS-MLP
outperforms all the baseline methods in terms of the overall
classification performance. In addition, the comparison be-
tween MS-MLP and MS-TF verifies the effectiveness of the
proposed multi-scale embedding strategy for mixing operation
of MLP, thus providing better classification performance. Re-
garding model complexity, we can see that the proposed MS-
MLP has the lowest model complexity as compared with the
transformer-based methods. Note that, the reason why LDTF
and MS-TF have the same model FLOPs is that we just simply
replace the LDE with MSE, and maintain the same embedding
dimension and transformer structure.
Convergence Analysis To show the efficiency of our proposed
method, we conduct experiments for convergence analysis,
where the transformer-based methods LDTF and Fusing-TF
are employed for comparison. The recall curves of these
methods for model training and testing are given in Fig. 2.

As can be seen from Fig. 2, our proposed MS-MLP can con-
verge rapidly and achieve stable Recall performance after 25
epochs without over-fitting problem, whereas the transformer-
based methods (i.e., LDTF and FusingTF) both require more
than 100 epochs. The results in Fig. 2 and Table III show that
our proposed MS-MLP can achieve better ECG classification
performance with higher training efficiency and lower model
complexity as compared with the transformer-based methods,
which verified the effectiveness of the proposed attention-free
MLP model with the mixing operation for effective multi-scale
feature learning.

IV. CONCLUSION

In this paper, we have presented a new method for ECG
classification, where a novel multi-scale sampling strategy
was proposed to exploit the multi-scale characteristics with
corresponding temporal information for signal embedding, and
an MLP-Mixer structure was employed to learn the latent
feature. The proposed method can not only achieve better
ECG classification performance, but also improve training
efficiency with lower model complexity. Experimental results
demonstrated the effectiveness and the superiority of our
method, as compared with the state-of-the-art methods.
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